Vorlesung Mensch-Maschine-Interaktion

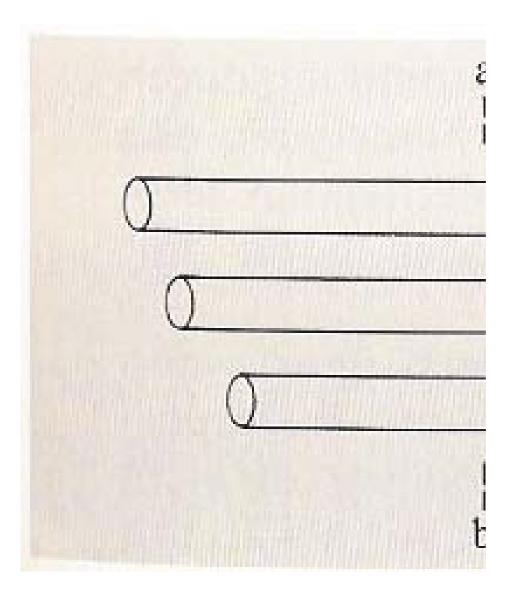
Albrecht Schmidt

Embedded Interaction Research Group LFE Medieninformatik Ludwig-Maximilians-Universität München http://www.hcilab.org/albrecht/

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Chapter 3 Designing Systems for Humans

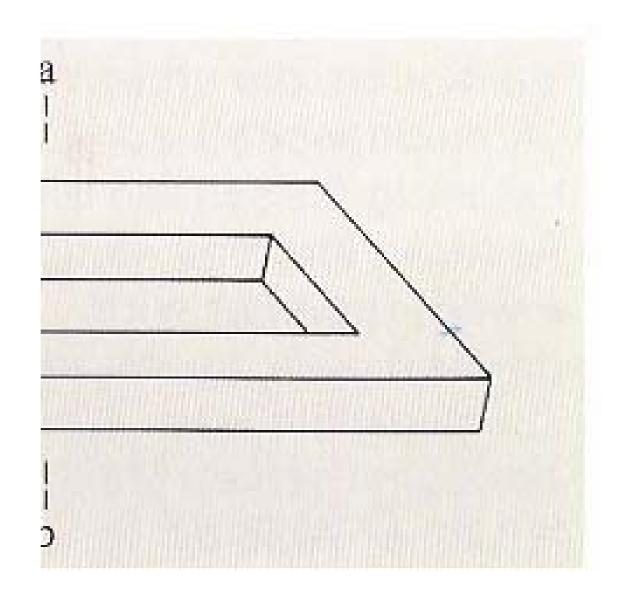
- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading (cont.)
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance



Seeing in 2D and 3D Views and Displays

- Everything on a 2D display is 2D!
 - If we see it 3 dimensional we imagine it...
 - Expectations and experience as basis
 - Displaying a projection of a 3D model
- "real" 3D needs requires a image for each eye
 - Happens naturally when looking at 3D objects in physical space
 - Can be simulated by providing a separate image for each eye using technology
- Options to visualize 3D graphics
 - Create a 2D image that the user translates in 3D in his head
 - Provide images (that represent a 3D model from a particular view point) for both eyes
 - Create 3D structures (static or dynamic)

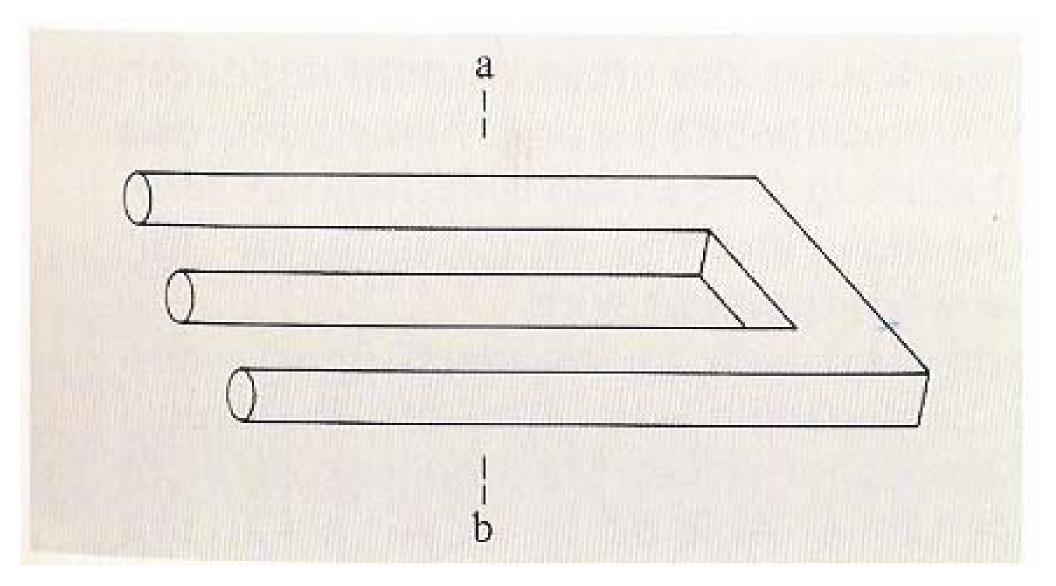
2D drawing: Make it conclusive...



From A. Maelicke, Vom Reiz der Sinne, VCH 1990

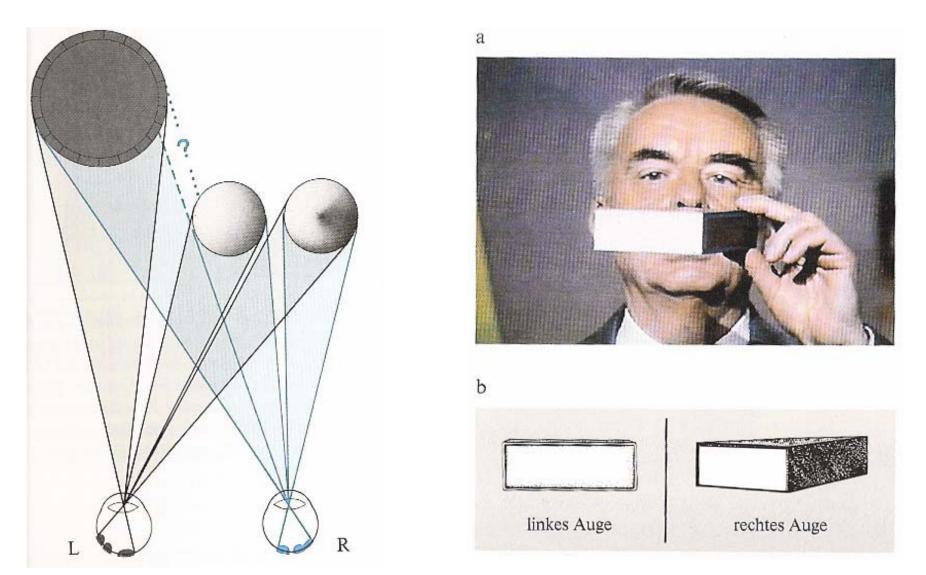
Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

2D drawing: Make it conclusive...



From A. Maelicke, Vom Reiz der Sinne, VCH 1990

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany


2D drawing: Make it conclusive...

From A. Maelicke, Vom Reiz der Sinne, VCH 1990

Stereo 3D Vision Basics

From A. Maelicke, Vom Reiz der Sinne, VCH 1990

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Stereo 3D Vision Basics

- Image for each object is dependent on the spatial relation between object and observer
 - changing viewpoint changes the images
 - Different people at different view points see different pictures

General principles

Designing for human visual perception

- Visual design guidelines result from how humans perceive visual information
- Be aware of visual perception when designing nonstandard UI components (e.g. in games and on the WWW)
 - Consider color perception
 - Consider central and peripheral vision
 - Gestalt Laws
 - Change blindness
 - Visual 3D impressions
- Be careful to make reading easy as it is an import time factor in many applications
- For more see Advanced topics in HCI (information visualization) and Smart Graphics

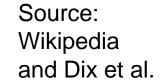
Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

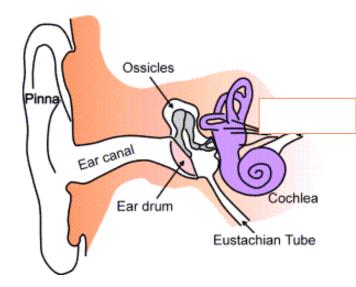
Human Ear Hearing

- 2 Ears
 - information about the environment
 - type of sound source
 - distance and direction
- Physical apparatus:
 - outer ear protects inner and amplifies sound (3khz-12khz)

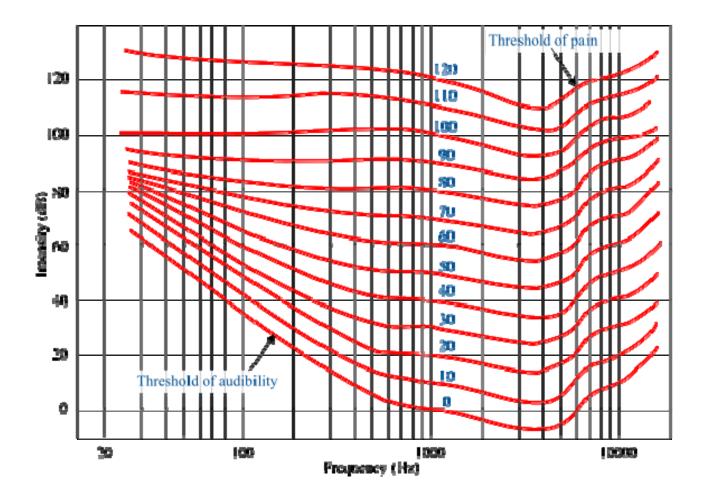
transmits sound waves as

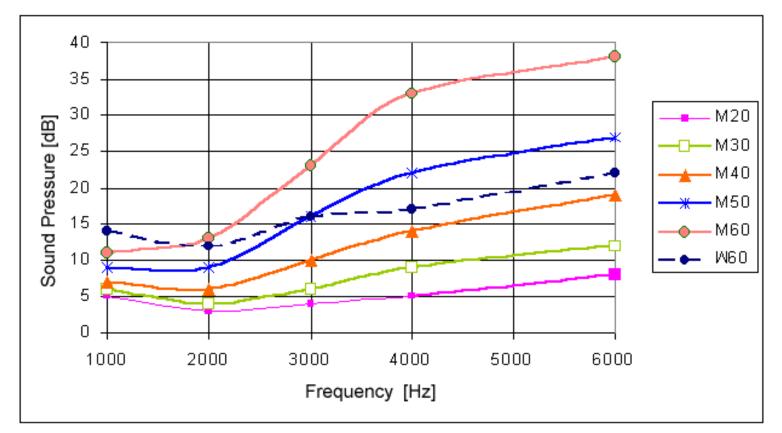

chemical transmitters are released

and cause impulses in auditory nerve


vibrations to inner ear

- middle ear
- inner ear
- Sound
 - pitch
 - loudness
 - timbre

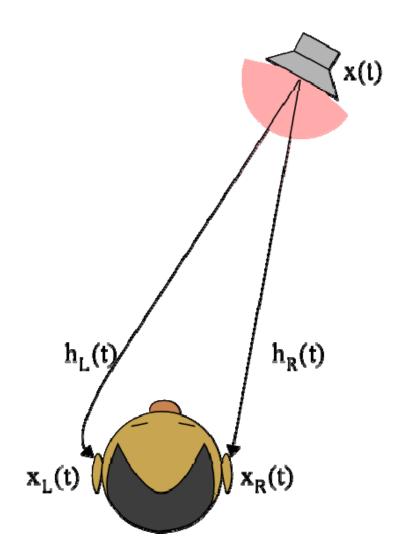

- sound frequency
- amplitude
- type or quality


Threshold of hearing/pain

 Fletcher-Munson equal-loudness contours (image from <u>http://en.wikipedia.org/wiki/Absolute_threshold_of_hearing</u>)

Threshold of hearing for different age groups

Thresholds of hearing for male (M) and female (W) subjects between the ages of 20 and 60 (for details see <u>http://en.wikipedia.org/wiki/Absolute_threshold_of_hearing</u>)


Hearing – Words and conversations

Examples:

- You are in a noisy environment like a crowded underground train and you can still have a conversation. You can even direct your attention to another conversation and "listen in".
- You are in a conversation and somewhere else someone mentions your name. You realize this even if you have not been listening actively to this conversation before.
- The auditory system filters incoming information and allows selective hearing
 - Selectively hearing sound in environment with background noise
 - Spotting keyword, e.g. cocktail party phenomenon

Spatial hearing

Caused by:

- Interaural time difference (ITD)
- Interaural intensity difference (IID)
- Head related transfer functions (HRTF)
- Better for high than for low frequencies

Touch

- Provides important feedback about environment.
- May be key sense for someone who is visually impaired.
- Stimulus received via receptors in the skin:
 - thermoreceptors heat and cold
 - nociceptors pain
 - mechanoreceptors
- pressure
 (some instant, some continuous)
- Some areas more sensitive than others e.g. fingers.
- Kinesthesis: the ability to feel movements of the limbs and body
- Proprioception: unconscious perception of movement and spatial orientation arising from stimuli within the body itself.
- affects comfort and performance.

(see http://www.isr.syr.edu/course/neu211/lecture_notes/lec14.html)

Movement

- Time taken to respond to stimulus: reaction time + movement time
- Movement time dependent on age, fitness etc.
- Reaction time dependent on stimulus type:
 - visual ~ 200ms
 - auditory ~ 150 ms
 - pain ~ 700ms
- Increasing reaction time decreases accuracy in the unskilled operator but not in the skilled operator.
- See Fitts' law

(experiment for visual reaction time see:

http://biology.clc.uc.edu/fankhauser/Labs/Anatomy_&_Physiology/A&P202/Nervous_System_Physiology/Visual_Reaction.htm

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HIJMAN-COMPLITER

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

Motivation: basic calculation

Calculate: 35 * 6

How do you do it?

Human Memory

 "Memory is the process involved in retaining, retrieving, and using information about stimuli, images, events, ideas, and skills after the original is not longer present." (Goldstein, p. 136)

Memory Model

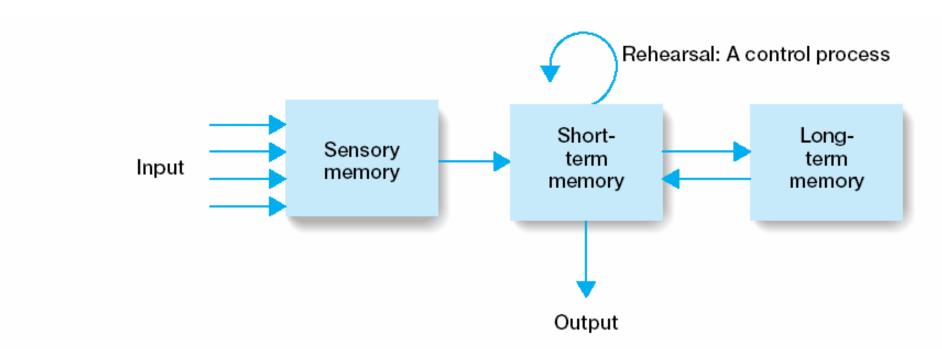


Figure 5.3 Flow diagram for Atkinson and Shiffrin's (1968) model of memory. This model, which is described in the text, is called the *modal model* because of the huge influence it has had on memory research.

(from: Goldstein, p. 139)

Memory

- Involves encoding and recalling knowledge and acting appropriately
- We don't remember everything involves filtering and processing
- Context is important in affecting our memory
- We recognize things much better than being able to recall things
 - The rise of the GUI over command-based interfaces
- Better at remembering images than words
 - The use of icons rather than names

Motivation: memorizing

Memorize

275928129163

49 179 23 89 481

49 1 pizza now

heh ousew asg reena ndb igt

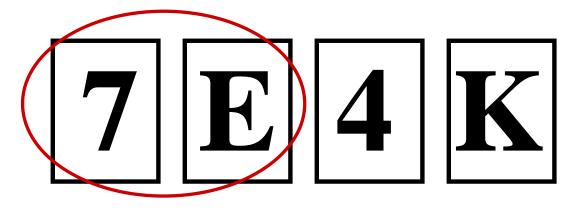
Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

The problem with the classic '7 \pm 2'

- George Miller's theory of how much information people can remember
- <u>http://www.well.com/user/smalin/miller.html</u> (The Psychological Review, 1956, vol. 63, pp. 81-97)
- People's immediate memory capacity is very limited
- In general you can remember 5-9 chunks and chunks can be letters, numbers, words, sentences, images, …

Wrong application of the theory

- Many designers have been led to believe that this is a useful finding for interaction design
 - Present only 7 options on a menu
 - Display only 7 icons on a tool bar
 - Have no more than 7 bullets in a list
 - Place only 7 items on a pull down menu
 - Place only 7 tabs on the top of a website page


But this is wrong! Why?

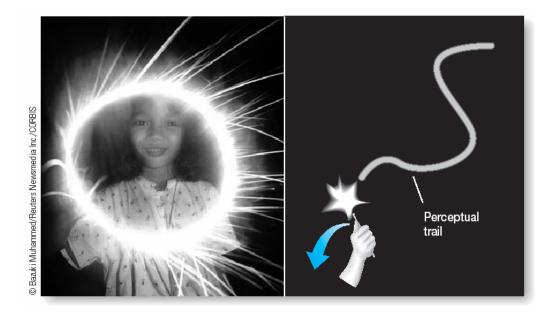
- Inappropriate application of the theory
- People can scan lists of bullets, tabs, menu items till they see the one they want
- They don't have to recall them from memory having only briefly heard or seen them

Motivation: Wason's cards

If a card has a vowel on one side it has an even number on the other

Is this true?

How many cards do you need to turn over to find out?


.... and which cards?

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Sensory Memory

- "Sensory Memory is the retention, for brief periods of time, of the effects of sensory stimulation." (Goldstein, p. 140)
- E.g. Persistence of vision

(Image from Goldstein, p. 142)

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Sensory Memory functions

- 1. collecting information for processing
- holding information briefly while initial processing is going on
- **3.** filling in the blanks when stimulation is intermittent

(from: Goldstein, p. 145)

sensory memory

- Buffers for stimuli received through senses
 - iconic memory: visual stimuli
 - echoic memory: aural stimuli
 - haptic memory: tactile stimuli

Examples

- "sparkler" trail
- stereo sound
- watching a film

Continuously overwritten

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL

MAN-COMPUTER

Short-term memory (STM)

- Scratch-pad for temporary recall
 - rapid access ~ 70ms
 - rapid decay ~ 200ms
 - limited capacity 7± 2 chunks

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HIIMAN-COMPLITER

THIRD EDITIO

Coding of information

- Visual image of a person
- Phonological sound of a voice
- Semantic meaning of what a person is saying
- Coding in Short Term Memory
 - Sound is most efficient
- When users have to remember something in the application → make it possible to code it phonological

Long-term memory (LTM)

- Repository for all our knowledge
 - slow access ~ 1/10 second
 - slow decay, if any
 - huge or unlimited capacity
- Two types
 - episodic serial memory of events
 - semantic- structured memory of facts, concepts, skills

semantic LTM derived from episodic LTM

ALAN DIX. JANET FINLAY

MAN-COMPL

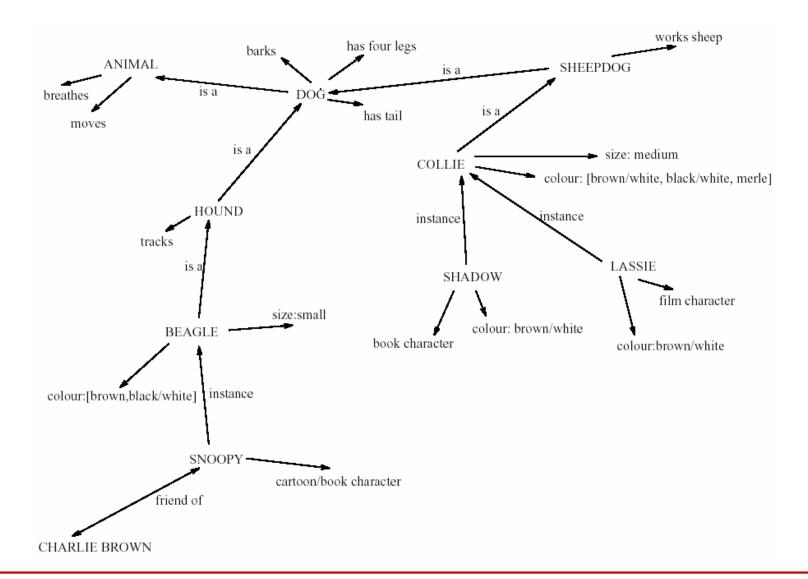
Long-term memory (cont.)

- Semantic memory structure
 - provides access to information
 - represents relationships between bits of information
 - supports inference
- Model: semantic network
 - inheritance child nodes inherit properties of parent nodes
 - relationships between bits of information explicit
 - supports inference through inheritance

ALAN DIX, JANET FINLA

Motivation: Decisions and long term memory

- Do dogs bark? Yes/No
- Do dogs breathe? Yes/No


The second question takes longer to answer → this indicates semantic coding!

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

LTM - semantic network

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

MMI 2005/2006

Slide 35

LTM - Storage of information

- rehearsal
 - information moves from STM to LTM
- total time hypothesis
 - amount retained proportional to rehearsal time
- distribution of practice effect
 - optimized by spreading learning over time
- structure, meaning and familiarity
 - information easier to remember

LTM - Forgetting

decay

• information is lost gradually but very slowly

interference

- new information replaces old: retroactive interference
- old may interfere with new: proactive inhibition

so may not forget at all memory is selective ...

... affected by emotion – can subconsciously `choose' to forget

LTM - retrieval

recall

 information reproduced from memory can be assisted by cues, e.g. categories, imagery

recognition

- information gives knowledge that it has been seen before
- less complex than recall information is cue

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION THIRD EDITION

Thinking

Reasoning deduction, induction, abduction Problem solving

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

MMI 2005/2006

Deductive Reasoning

- Deduction:
 - derive logically necessary conclusion from given premises.
 - e.g. If it is Friday then she will go to work It is Friday Therefore she will go to work.

Logical conclusion not necessarily true:

e.g. If it is raining then the ground is dry It is raining Therefore the ground is dry

ALAN DIX. JANET FINLAY

MAN-COMPL

Deduction (cont.)

When truth and logical validity clash ...
 e.g. Some people are babies
 Some babies cry
 Inference - Some people cry
 Correct?

People bring world knowledge to bear

ALAN DIX, JANET FINLAY

HIIMAN-COMPLIT

Inductive Reasoning

- Induction:
 - generalize from cases seen to cases unseen e.g. all elephants we have seen have trunks therefore all elephants have trunks.
- Unreliable:
 - can only prove false not true
 - ... but useful!
- Humans not good at using negative evidence e.g. Wason's cards.

Abductive reasoning

- reasoning from event to cause
 e.g. Sam drives fast when drunk.
 - If I see Sam driving fast, assume drunk.

Unreliable:

can lead to false explanations

ALAN DIX, JANET FINLAY, GREGORY D. ABOWD, RUSSELL BEALE HUMAN-COMPUTER INTERACTION THIRD EDITION

Problem solving

Analogy

- analogical mapping:
 - novel problems in new domain?
 - use knowledge of similar problem from similar domain
- analogical mapping difficult if domains are semantically different

Skill acquisition

- skilled activity characterized by chunking
 - lot of information is chunked to optimize STM
- conceptual rather than superficial grouping of problems
- information is structured more effectively

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

Emotions Attractive Things Work Better

- Experiment
 - Six ATM identical in function and operation
 - Some aesthetically more attractive than others
 - Result: the nicer one's are easier to use...
- Aesthetics can change the emotional state
- Emotions all us to quickly assess situations
 - Positive emotion make us more creative
- Attractive things make feel people good
 → they are more creative
 → things are easier to use...
- See D. Norman, Emotional Design (Chapter 1)

Emotion

- Various theories of how emotion works
 - James-Lange: emotion is our interpretation of a physiological response to a stimuli
 - Cannon: emotion is a psychological response to a stimuli
 - Schacter-Singer: emotion is the result of our evaluation of our physiological responses, in the light of the whole situation we are in
- Emotion clearly involves both cognitive and physical responses to stimuli

Emotion (cont.)

- The biological response to physical stimuli is called affect
- Affect influences how we respond to situations
 - positive \rightarrow creative problem solving
 - negative \rightarrow narrow thinking

"Negative affect can make it harder to do even easy tasks; positive affect can make it easier to do difficult tasks"

(Donald Norman)

MMI 2005/2006

Emotion (cont.)

- Implications for interface design
 - stress will increase the difficulty of problem solving
 - relaxed users will be more forgiving of shortcomings in design
 - aesthetically pleasing and rewarding interfaces will increase positive affect

Chapter 3 Designing Systems for Humans

- 3.1 Design for humans
- 3.2 Space and territory
- 3.3 Visual perception and reading
- 3.4 Hearing, Touch, Movement
- 3.5 Cognitive abilities and memory
- 3.6 Emotion
- 3.7 Natural and intuitive interaction, Affordance

Affordance Theory

- Affordance is the perceived possibility for action
- Objective properties that imply action possibilities how we can use things – independent of the individual. (Gibson)
- Perceived Affordance includes expierence of an individual (Norman)
- Example: vandalism at a bus stop
 - Concrete → graffiti
 - Glass \rightarrow smash
 - Wood \rightarrow carvings

Gibson, J.J. (1979). *The Ecological Approach to Visual Perception*, Houghton Mifflin, Boston. (Currently published by Lawrence Eribaum, Hillsdale, NJ.)

Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books. (The paperback version is Norman, 1990.)

Natural and Intuitive User Interfaces?

- Very little is intuitive and natural with regard to computer user interfaces!
- To make it feel intuitive and natural
 - Base UIs on previous knowledge of the user
 - Use clear affordances and constraints

Donald A. Norman, Affordance, conventions, and design, Interactions. Volume 6, Number 3 (1999), Pages 38-41 http://www.cit.gu.edu.au/~mf/2506CIT/norm99.pdf

References

- Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale. (2003) Human Computer, Interaction (third edition), Prentice Hall, ISBN 0130461091 <u>http://www.hcibook.com/e3/</u>
- Donald A. Norman, Affordance, conventions, and design, Interactions. Volume 6, Number 3 (1999), Pages 38-41 <u>http://www.cit.gu.edu.au/~mf/2506CIT/norm99.pdf</u>
- Gibson, J.J. (1979). The Ecological Approach to Visual Perception, Houghton Mifflin, Boston. (Currently published by Lawrence Eribaum, Hillsdale, NJ.)
- Norman, D. A. (1988). The Psychology of Everyday Things. New York: Basic Books. (The paperback version is Norman, 1990.)
- Norman, D. A (2003) Emotional Design, ISBN: 0465051359 (Chapter 1)
- Goldstein, E. Bruce (2004). Cognitive Psychology : Connecting Mind, Research and Everyday Experience, ISBN: 0534577261
 <u>http://64.78.63.75/samples/05PSY0304GoldsteinCogPsych.pdf</u>
 <u>http://www.wadsworth.com/psychology_d/templates/student_resources/0534577261/author_video/</u>
- A. Maelicke (1990), Vom Reiz der Sinne, VCH

