Vorlesung Mensch-Maschine-Interaktion

Albrecht Schmidt

Embedded Interaction Research Group LFE Medieninformatik Ludwig-Maximilians-Universität München http://www.hcilab.org/albrecht/

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design Space for Input/Output

The solution space

- What technologies are available to create interactive electronic products?
 - Software
 - Hardware
 - Systems
- How can users communicate and interact with electronic products?
 - Input mechanisms
 - Options for output
- Approaches to Interaction
 - Immediate "real-time" interaction
 - Batch / offline interaction

Motivation: 1D Pointing Device

- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8

Motivation: 1D Pointing Device Example: Computer Rope Interface

- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8

http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm

Example: Computer Rope Interface

http://web.media.mit.edu/~win/Canopy%20Climb/Rope%20Interface%20Export2.avi http://web.media.mit.edu/~win/Canopy%20Climb/Treemovie.avi

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Example: Computer Rope Interface

- Low tech implementation
- Mouse scrolling

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Basic Input Operations

- Text Input
 - Continuous
 - Keyboard and alike
 - Handwriting
 - Spoken
 - Block
 - Scan/digital camera and OCR
- Pointing & Selection
 - Degree of Freedom
 - 1, 2, 3, 6, <more> DOF
 - Isotonic vs. Isometric
 - Translation function
 - Precision
 - Technology
 - Feedback

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

- Direct Mapped Controls
 - Hard wired buttons/controls
 - On/off switch
 - Volume slider
 - Physical controls that can be mapped
 - PalmPilot buttons
 - "internet-keyboard" buttons
 - Industrial applications
- Media capture
 - Media type
 - Audio
 - Images
 - Video
 - Quality/Resolution
 - Technology

Complex Input Operations

Examples of tasks

- Filling a form = pointing, selection, and text input
- Annotation in photos = image capture, pointing, and text input
- Moving a group of files = pointing and selection
- Examples of operations
 - Selection of objects
 - Grouping of objects
 - Moving of objects
 - Navigation in space

Basic Output Operations / Option

- Visual Output
 - Show static
 - Text
 - Images
 - Graphics
 - Animates
 - Text
 - Graphics
 - Video
- Audio
 - Earcons / auditory icons
 - Synthetic sounds
 - Spoken text (natural / synthetic)
 - Music
- Tactile
 - Shapes
 - Forces

- Further senses
 - Smell
 - Temperature
 - ...
- Technologies
 - Visual
 - Paper
 - Objects
 - Displays
 - Audio
 - Speakers
 - 1D/2D/3D
 - Tactile
 - Objects
 - Active force feedback

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Input device taxonomy
 - 3.7.4 Force feedback
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Design Space and Technologies

Why do we need to know about technologies?

- For standard applications
 - Understanding the differences in systems potential users may have to access / use once software product
- For specific custom made applications
 - Understanding options that are available
 - Creating a different experience (e.g. for exhibition, trade fare, museum, ...)

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Pointing Devices with 2DOF

- Pointing devices such as
 - Mouse
 - Track ball
 - Touch screen
 - Eye gaze
 - ...
- Off the desktop other technologies and methods are required
 - Virtual touch screen
 - Converting surfaces into input devices
 - Smart Board
 - Human view
 - ...

Classification of Pointing devices

- Dimensions
 - 1D / 2D / 3D
- Direct vs. indirect
 → integration with the visual representation
 - Touch screen is direct
 - Mouse is indirect
- Discreet vs. continuous \rightarrow resolution of the sensing
 - Touch screen is discreet
 - Mouse is continuous
- Absolute vs. Relative
 →movement/position used as input
 - Touch screen is absolute
 - Mouse is relative

Examples of Pointing Devices (most with additional functionality)

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Virtual Touch Screen

- Surfaces are converted into touch screens
- Image/video is projected onto the surface
- Using a camera (or other tracking technology) gestures are recognized
- Interpretation by software
 - simple where is someone pointing to
 - complex gestures, sign language
- application
 - Kiosk application where vandalism is an issue
 - Research prototypes ...

Smart-Board

- Front or back projection
- Interactive screen

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Smart-Board DViT (digital vision touch)

Figure 1: DViT Technology Camera

Figure 2: Camera Identification of a Contact Point

- Vision based, 4 cameras, 100FPS
- Nearly on any surface
- More than one pointers
- http://www.smarttech.com/dvit/index.asp

Example: Window Tap Interface

- locates the position of knocks and taps atop a large sheet of glass.
- piezoelectric pickups
 - located near the sheet's corners
 - record the structural-acoustic wavefront
 - relevant characteristics from these signals,
 - amplitudes,
 - frequency components,
 - differential timings,
 - to estimate the location of the hit
 - simple hardware
 - no special adaptation of the glass pane
 - knock position resolution of about s=2 cm across 1.5 meters of glass

http://www.media.mit.edu/resenv/Tapper/

Example: Window Tap Interface

http://www.media.mit.edu/resenv/Tapper/

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Example: Window Tap Interface

<u>http://www.media.mit.edu/resenv/Tapper/</u>

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

What is the drawback of 2D interaction using a single Pointing device?

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Basic Problem with a single 2DOF Pointing Device

- With 2DOF most often time multiplexing is implied!
- One operation at the time (e.g. slider can be only be moved sequentially with the mouse)

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Game Controllers Force feedback more degrees of freedom time-multiplex is an issue

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

3D Input 6 DOF Interfaces

- 3D input is common and required in many different domains
 - Creation and manipulation of 3D models (creating animations)
 - Navigation in 3D information (e.g. medical images)
- Can be simulated with standard input devices
 - Keyboard and text input (6 values)
 - 2DOF pointing device and modes
 - Gestures
- Devices that offer 6 degrees of freedom
 - Criteria
 - Speed
 - Accuracy
 - Ease of learning
 - Fatigue
 - Coordination
 - Device persistence and acquisition
 - Little common understanding

Basic Terms: different rotations

http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

6DOF

- Controller resistance
 - Isotonic = device is moving, resistance stays the same
 - Displacement of device is mapped to displacement of the cursor
 - Elastic
 - Isometric = device is not moved
 - Force is mapped to rate control

Transfer function

- Position control
 - Free moving (isotonic) devices device displacement is mapped/scaled to position
- Rate control
 - Force or displacement is mapped onto cursor velocity
 - Integration of input over time -> first order control

Analysis of Position versus Rate Control

http://vered.rose.utoronto.ca/people/shumin_dir/papers/PhD_Thesis/Chapter2/Chapter23.html

Performance depends on transfer function and resistance

http://www.siggraph.org/publications/newsletter/v32n4/contributions/zhai.html

Controller resistance

Isometric

- pressure devices / force devices
- Infinite resistance
- device that senses force but does not perceptibly move

Isotonic

- displacement devices, free moving devices or unloaded devices
- zero or constant resistance
- Elastic: Device's resistive force increases with displacement, also called springloaded
- Viscous: resistance increases with velocity of movement,
- Inertial: resistance increases with acceleration

Flying Mice (I)

- a mouse that can be moved and rotated in the air for 3D object manipulation.
- Many different types...
- flying mouse is a free-moving, i.e. *isotonic* device.
- displacement of the device is typically mapped to a cursor displacement.
- Such type of mapping (transfer function) is also called *position control*.

http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html

Flying Mice (II)

- The advantages of these "flying mice" devices are:
 - Easy to learn, because of the natural, direct mapping.
 - Relatively fast speed
- disadvantages to this class of devices:
 - Limited movement range. Since it is position control, hand movement can be mapped to only a limited range of the display space.
 - Lack of coordination. In position control object movement is directly proportional to hand/finger movement and hence constrained to anatomical limitations: joints can only rotate to certain angle.
 - Fatigue. This is a significant problem with free moving 6 DOF devices because the user's arm has to be suspended in the air without support.
 - Difficulty of device acquisition. The flying mice lack persistence in position when released.

http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html

 The form factor of devices has a significant impact on the pointing performance. E.g. Fingerball vs. glove

Stationary devices (I)

- devices that are mounted on stationary surface.
- Have a self-centering mechanism
- They are either *isometric* devices that do not move by a significantly perceptible magnitude or *elastic* devices that are spring-loaded.
- Typically these devices work in rate control mode, i.e. the input variable, either force or displacement, is mapped onto the velocity of the cursor.
- The cursor position is the integration of input variable over time.

Stationary devices (II)

- isometric device (used with rate control) offers the following advantages:
 - Reduced fatigue, since the user's arm can be rested on the desktop.
 - Increased coordination. The integral transformation in rate control makes the actual cursor movement a step removed from the hand anatomy.
 - Smoother and more steady cursor movement. The rate control mechanism (integration) is a low pass filter, reducing high frequency noises.
 - Device persistence and faster acquisition. Since these devices stay stationary on the desktop, they can be acquired more easily.
- isometric rate control devices may have the following disadvantages:
 - Rate control is an acquired skill. A user typically takes tens of minutes, to gain controllability of isometric rate control devices.
 - Lack of control feel. Since an isometric device feels completely rigid

Multi DOF Armatures

- multi DOF input devices are mechanical armatures.
- the armature is actually a hybrid between a flying-mouse type of device and a stationary device.
- Can be seen as a are near isotonic with exceptional singularity positions position control device (like a flying mouse)
- has the following particular advantages:
 - Not susceptible to interference.
 - Less delay: response is usually better than most flying mouse technology
 - Can be configured to "stay put", when friction on joints is adjusted and therefore better for device acquisition.
- drawbacks:
 - Fatigue: as with flying mouse.
 - Constrained operation. The user has to carry the mechanical arm to operate, At certain singular points, position/orientation is awkward.
- This class of devices can also be equipped with force feedback, see later Phantom Device

Technology Examples Data Glove

- Data glove to input information about
 - Orientation, (roll, pitch)
 - Angle of joints
 - Sometimes position (external tracking).
- Time resolution about. 150...200 Hz
- Precision (price dependent):
 - Up to 0,5 ° for expensive devices
 (> 10.000 €)
 - Cheap devices (€100) much less

Technology Examples 3D-Mouse

- Spacemouse und Spaceball:
 - Object (e.g. Ball) is elastically mounted
 - Pressure, pull, torsion are measured
 - Dynamic positioning

6DOF

http://www.alsos.com/Products/Devices/SpaceBall.html

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Technology Examples 3D-Graphic Tablet

- Graphic tablets with 3 dimensions
- Tracking to acquire spatial position (e.g. using Ultrasound)

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Force Feedback Mouse

- Pointing devices with force feedback:
 - Feeling a resistance that is controllable
 - Active force of the device
 - Common in game controllers (often very simple vibration motors)
- Examples in desktop use
 - Menu slots that snap in
 - feel icons
 - Feel different surfaces
 - Can be used to increase accessibility for visually impaired
- Logitech iFeel Mouse <u>http://www.dansdata.com/ifeel.htm</u>

Phantom – Haptic Device

- high-fidelity 3D force-feedback input device with 6DOF
- GHOST SDK to program it

www.sensable.com

PHANTOM® Omni[™] Haptic Device

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Specification: PHANTOM® Omni[™] Haptic Device

Footprint (Physical area device base occupies on desk)	6 5/8 W x 8 D in. ~168 W x 203 D mm.			
Range of motion	Hand movement pivoting at wrist			
Nominal position resolution	> 450 dpi. ~ 0.055 mm.			
Maximum exertable force at nominal (orthogonal arms) position	0.75 lbf. (3.3 N)			
Force feedback	X, Y, Z			
Position sensing [Stylus gimbal]	x, y, z (digital encoders) [Pitch, roll, yaw (± 5% linearity potentiometers)			
Applications	Selected Types of Haptic Research and The FreeForm® Concept [™] system			

Examples:

Programming Abstractions for haptic devices

- GHOST SDK <u>http://www.sensable.com/products/phantom_gho</u> <u>st/ghost.asp</u>
- OpenHapticsTM Toolkit <u>http://www.sensable.com/products/phantom_gho</u> <u>st/OpenHapticsToolkit-intro.asp</u>
 - toolkit is patterned after the **OpenGL® API**
 - Using existing OpenGL code for specifying geometry, and supplement it with OpenHaptics commands to simulate haptic material properties such as friction and stiffness

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Taxonomy for Input Devices (Buxton)

- continuous vs discrete?
- agent of control (hand, foot, voice, eyes ...)?
- what is being sensed (position, motion or pressure), and
- the number of dimensions being sensed (1, 2 or 3)
- devices that are operated using similar motor skills
- devices that are operated by touch vs. those that require a mechanical intermediary between the hand and the sensing mechanism

Taxonomy for Input Devices (Buxton)

				Number of Dimensions					
		1 2				3			
Property Sensed	sition	Rotary Pot	Sliding Pot	Tablet & Puck	Tablet & Stylus	Light Pen	lsotonic Joystick	3D Joystick	M
	Po:				Touch Tablet	Touch Screen			Т
	otion	Continuous Rotary Pot	Treadmill	Mouse	 		Sprung Joystick Trackball	3D Trackball	M
	Ψ		Ferinstat				X/Y Pad		Т
	Pressure	Torque Sensor					lsometric Joystick		Т
		rotary	linear	puck	stylus finger hoiz	stylus finger vertical	small fixed location	small fixed with twist	

http://www.billbuxton.com/lexical.html

Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. *Computer Graphics*, 17 (1), 31-37.

"...basically, an input device is a transducer from the physical properties of the world into the logical parameters of an application." (Bill Buxton)

Physical Properties used by Input devices (Card91)

	Linear	Rotary
Position		
Absolute	P (Position)	R (Rotation)
Relative	dP	dR
Force		
Absolute	F (Force)	T (Torque)
Relative	dF	dT

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122

http://www2.parc.com/istl/projects/uir/pubs/items/UIR-1991-02-Card-TOIS-Morphological.pdf

Input Device Taxonomy (Card91)

		Linear			Rotary		
	X	Y	Z	rX	rY	rZ	
Р							R
dP							dR
F							Τ
dF							dT
	1 10 100 inf						

Input Device Taxonomy (Card91)

		Linear			Rotary		
	X	Y	Z	rX	rY	rZ	
Р	-						R
dP							dR
F							Т
dF							dT
	1 10 100 inf						

Example: Touch Screen

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Input Device Taxonomy (Card91)

	Linear		Rotary				
	X	Y	Z	rX	rY	rZ	
Р			3				R
dP	-						dR
F							Т
dF							dT
	1 10 100 inf						

Example: Wheel mouse

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Design Space for Input Devices

Footprint

- Size of the devices on the desk
- Bandwidth
 - Human The bandwidth of the human muscle group to which the transducer is attached
 - Application the precision requirements of the task to be done with the device
 - Device the effective bandwidth of the input device

Movement time for Different Devices / Muscle Groups (Card91)

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Exertion Interfaces

Video

http://www.exertioninterfaces.com/technical_details/index.htm

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

http://www.exertioninterfaces.com/technical_details/index.htm

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

- stereo-based face tracking system
- can track the 3D position and orientation of a user in real-time
- application for interaction with a large display

220 pixels

http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf

18 pixels

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Input beyond the screen

- Capture (photo, tracking)
- Interactive modeling

Capture Interaction

Mimio

- Tracking of flip chart makers
- Capture writing and drawaing on a large scale

PC Notes Taker

 Capture drawing and handwriting on small scale

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Photo Capture

- Write on traditional surfaces, e.g. blackboard, white board, napkin
- Capture with digital camera

How MANY HERE HAVE HEARD PHIL OCHS, WHO CARED. . . . GOTTA GO, GOTTA DRIVE WILL GO, GOTTA DRIVE DRUNKE, BACK TO C-U, AN ALMOSTAN DUL TOWNSHIP, GOTTA FLR. GOTTA CLIP, GOTTA ZIPOFF IN CLONN MUNICIPO B CONSETTER. HOLE WE GO A SWELL SEMESTER. HOLE WE GO MONET UP WRITING BUTTER, AS DEAR PEERS IN THE CLORE. LETS WORK TOGETHIER.

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

ne Capture

UPRA	-	-	~
t :	7:57*	8:11*	8:31*
e :	8:26	8:32	8:54
es :	0	0	0
on : * Estin	0:29 mated time o	0:21 nly + India	0:23 cates next day

- New applications due the availability of capture tools
 - Paper becomes an input medium again (people just take a picture of it)
 - Public displays can be copied (e.g. taking a picture of an online time table on a ticket machine)

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Interactive Modelling (Merl)

http://www.merl.com/papers/TR2000-13/

Figure 1: (a) a physical block structure comprising 98 blocks; (b) a close-up of the blocks; (c) a bottom view of the circuit board inside each block; and renderings of the virtual model recovered from the structure, one literal (d) and one interpreted (e). The literal rendering uses associated shapes and colors to render the blocks. The virtual model is augmented automatically for the interpreted rendering.

Interactive Modelling (Merl)

http://www.merl.com/papers/TR2000-13/

(a)

Figure 4: (a) a model of a castle comprising 118 blocks, and (b) an interpreted rendering of it. The automatic enhancements in this graphical interpretation include the addition of turrets, roofs, windows, archways, a portcullis, and a flagpole in appropriate locations, as well as the selection of suitable surface properties and features for all the geometry. The 560-block model in (c)—a 12-inch ruler is included to show scale—was built as a challenging virtual environment for Quake II, the data format for which is another output option in our system. Applying the same interpretive style to this larger model to get the rendering in (d) requires changing only one numerical parameter indicative of building scale: it specifies the smallest number of blocks in the structure that can constitute a distinct architectural feature.

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Interactive Modelling Cont. (Merl)

Figure 8: Examples from the image sequences for the 16 clay models captured by the camera illustrated in Figure 5.

http://www.merl.com/papers/TR2000-13/

Camera

Computer

Rotary Table

Laser

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

References

- Computer Rope Interface <u>http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm</u>
- <u>Sensor Systems for Interactive Surfaces</u>, J. Paradiso, K. Hsiao, J. Strickon, J. Lifton, and A. Adler, IBM Systems Journal, Volume 39, Nos. 3 & 4, October 2000, pp. 892-914. <u>http://www.research.ibm.com/journal/sj/393/part3/paradiso.html</u>
- Window Tap Interface <u>http://www.media.mit.edu/resenv/Tapper/</u>
- Vision-Based Face Tracking System for Large Displays <u>http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf</u>
- http://vered.rose.utoronto.ca/people/shumin_dir/papers/PhD_Thesis/Chapter2/Chapter23.html
- http://www.siggraph.org/publications/newsletter/v32n4/contributions/zhai.html
- http://www.merl.com/papers/TR2000-13
- Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 <u>http://www2.parc.com/istl/projects/uir/pubs/items/UIR-1991-02-Card-TOIS-Morphological.pdf</u>
- Logitech iFeel Mouse <u>http://www.dansdata.com/ifeel.htm</u>
- Exertion Interfaces
 <u>http://www.exertioninterfaces.com/technical_details/index.htm</u>

