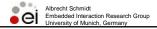
Vorlesung Mensch-Maschine-Interaktion

Albrecht Schmidt


Embedded Interaction Research Group LFE Medieninformatik Ludwig-Maximilians-Universität München http://www.hcilab.org/albrecht/

MMI 2005/2006

Chapter 4 Analyzing the Requirements and Understanding the Design Space

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design Space for Input/Output

MMI 2005/2006

The solution space

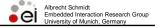
- What technologies are available to create interactive electronic products?
 - Software
 - Hardware
 - Systems
- How can users communicate and interact with electronic products?
 - Input mechanisms
 - Options for output
- Approaches to Interaction
 - Immediate "real-time" interaction
 - Batch / offline interaction

MMI 2005/2006

Slide 3

Motivation: 1D Pointing Device

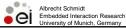
- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8


MMI 2005/2006

Motivation: 1D Pointing Device Example: Computer Rope Interface

- Interface to move up and down
- Visualization of rainforest vegetation at the selected height
- Exhibition scenario
- Users: kids 4-8

http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm


MMI 2005/2006

Slide 5

Example: Computer Rope Interface

http://web.media.mit.edu/~win/Canopy%20Climb/Rope%20Interface%20Export2.avihttp://web.media.mit.edu/~win/Canopy%20Climb/Treemovie.avi

MMI 2005/2006

Example: Computer Rope Interface

- Low tech implementation
- Mouse scrolling

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Basic Input Operations

- Text Input
 - Continuous
 - · Keyboard and alike
 - Handwriting
 - Spoken
 - Block
 - · Scan/digital camera and OCR
- Pointing & Selection
 - · Degree of Freedom
 - 1, 2, 3, 6, <more> DOF
 - Isotonic vs. Isometric
 - Translation function
 - Precision
 - Technology
 - Feedback

- **Direct Mapped Controls**
 - Hard wired buttons/controls
 - · On/off switch
 - · Volume slider
 - Physical controls that can be mapped
 - · PalmPilot buttons
 - "internet-keyboard" buttons
 - · Industrial applications
- Media capture
 - Media type
 - Audio
 - Images Video
 - Quality/Resolution
 - Technology



Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

Complex Input Operations

- Examples of tasks
 - Filling a form = pointing, selection, and text input
 - Annotation in photos = image capture, pointing, and text input
 - Moving a group of files = pointing and selection
- Examples of operations
 - Selection of objects
 - Grouping of objects
 - Moving of objects
 - Navigation in space

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Basic Output Operations / Option

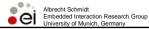
- Visual Output
 - Show static
 - Text
 - Images
 - Graphics
 - Animates
 - Text
 - Graphics
 - Video
- Audio
 - Earcons / auditory icons
 - Synthetic sounds
 - Spoken text (natural / synthetic)
 - Music
- Tactile
 - Shapes
 - Forces

- Further senses
 - Smell
 - Temperature
- Technologies
 - Visual
 - Paper
 - Objects
 - Displays
 - Audio
 - Speakers • 1D/2D/3D
 - Tactile
 - Objects
 - Active force feedback

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Input device taxonomy
 - 3.7.4 Force feedback
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - · 3.7.8 Further output options

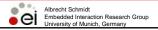
Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany


Design Space and Technologies

Why do we need to know about technologies?

- For standard applications
 - Understanding the differences in systems potential users may have to access / use once software product
- For specific custom made applications
 - Understanding options that are available
 - Creating a different experience (e.g. for exhibition, trade fare, museum, ...)

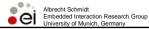
- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

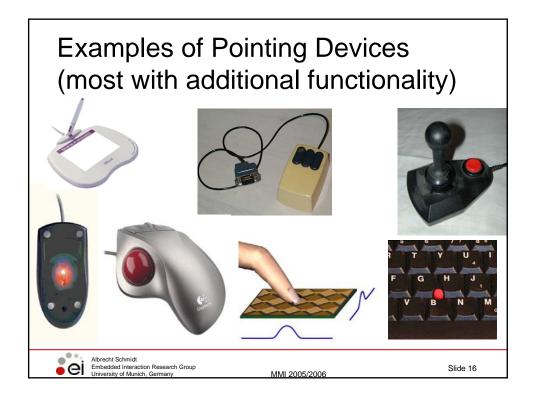


AMI 2005/2006

Slide 13

Pointing Devices with 2DOF


- Pointing devices such as
 - Mouse
 - Track ball
 - Touch screen
 - Eye gaze
 - ..
- Off the desktop other technologies and methods are required
 - Virtual touch screen
 - · Converting surfaces into input devices
 - Smart Board
 - Human view
 - ...


MMI 2005/2006

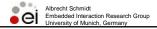
Classification of Pointing devices

- Dimensions
 - 1D / 2D / 3D
- Direct vs. indirect
 - → integration with the visual representation
 - · Touch screen is direct
 - · Mouse is indirect
- Discreet vs. continuous
 - → resolution of the sensing
 - · Touch screen is discreet
 - Mouse is continuous
- Absolute vs. Relative
 movement/position used as input
 - · Touch screen is absolute
 - Mouse is relative

MMI 2005/2006

Virtual Touch Screen

- Surfaces are converted into touch screens
- Image/video is projected onto the surface
- Using a camera (or other tracking technology) gestures are recognized
- Interpretation by software
 - simple where is someone pointing to
 - complex gestures, sign language
- application
 - Kiosk application where vandalism is an issue
 - · Research prototypes ...

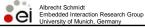


Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Smart-Board

- Large touch sensitive surface
- Front or back projection
- Interactive screen

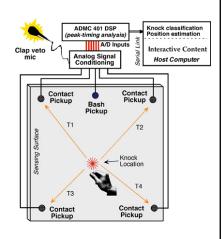
Smart-Board DViT (digital vision touch)



Camera 1 Camera 2 (x, y) Camera 3 Camera 0

Figure 1: DViT Technology Camera

Figure 2: Camera Identification of a Contact Point


- Vision based, 4 cameras, 100FPS
- Nearly on any surface
- More than one pointers
- http://www.smarttech.com/dvit/index.asp

Example: Window Tap Interface

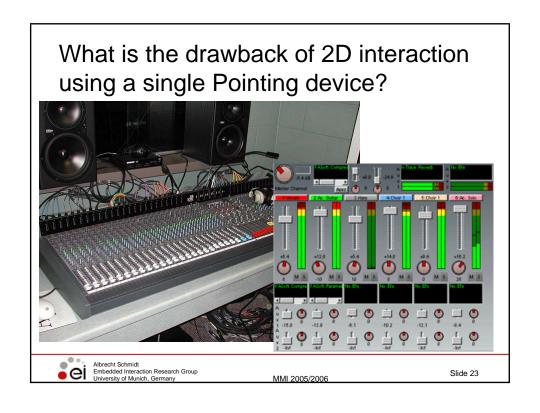
- locates the position of knocks and taps atop a large sheet of glass.
- piezoelectric pickups
 - located near the sheet's corners
 - record the structural-acoustic wavefront
 - relevant characteristics from these signals,
 - amplitudes,
 - frequency components,
 - · differential timings,
 - to estimate the location of the hit
 - simple hardware
 - no special adaptation of the glass pane
 - knock position resolution of about s=2 cm across 1.5 meters of glass

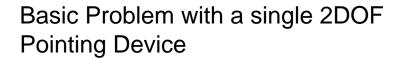

http://www.media.mit.edu/resenv/Tapper/

Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

Example: Window Tap Interface

http://www.media.mit.edu/resenv/Tapper/




Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Example: Window Tap Interface

- With 2DOF most often time multiplexing is implied!
- One operation at the time (e.g. slider can be only be moved sequentially with the mouse)

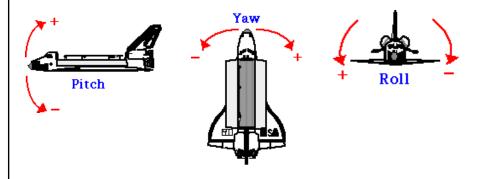
- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

MMI 2005/2006

lide 26

3D Input 6 DOF Interfaces

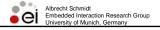
- 3D input is common and required in many different domains
 - Creation and manipulation of 3D models (creating animations)
 - Navigation in 3D information (e.g. medical images)
- Can be simulated with standard input devices
 - Keyboard and text input (6 values)
 - · 2DOF pointing device and modes
 - Gestures
- Devices that offer 6 degrees of freedom
 - Criteria
 - Speed
 - Accuracy
 - Ease of learning
 - Fatigue
 - Coordination
 - Device persistence and acquisition
 - · Little common understanding



Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

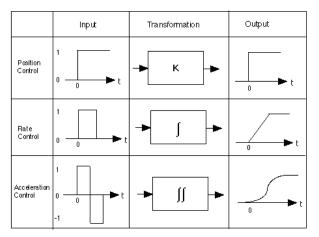
http://liftoff.msfc.nasa.gov/academy/rocket_sci/shuttle/attitude/pyr.html

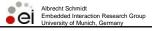


Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

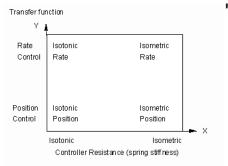
6DOF

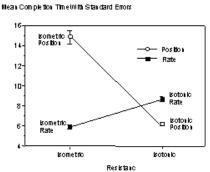

- Controller resistance
 - Isotonic = device is moving, resistance stays the same
 - Displacement of device is mapped to displacement of the cursor
 - Elastic
 - Isometric = device is not moved
 - · Force is mapped to rate control
- Transfer function
 - Position control
 - Free moving (isotonic) devices device displacement is mapped/scaled to position
 - Rate control
 - · Force or displacement is mapped onto cursor velocity
 - Integration of input over time -> first order control


MMI 2005/2006

Slide 29

Analysis of Position versus Rate Control




http://vered.rose.utoronto.ca/people/shumin_dir/papers/PhD_Thesis/Chapter2/Chapter23.html

MMI 2005/2006

Performance depends on transfer function and resistance

http://www.siggraph.org/publications/newsletter/v32n4/contributions/zhai.html

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Controller resistance

- Isometric
 - pressure devices / force devices
 - Infinite resistance
 - device that senses force but does not perceptibly move
- - · displacement devices, free moving devices or unloaded devices
 - zero or constant resistance
- **Elastic**: Device's resistive force increases with displacement, also called springloaded
- Viscous: resistance increases with velocity of movement,
- Inertial: resistance increases with acceleration

Slide 32

Flying Mice (I)

- a mouse that can be moved and rotated in the air for 3D object manipulation.
- Many different types...
- flying mouse is a free-moving, i.e. isotonic device.
- displacement of the device is typically mapped to a cursor displacement.
- Such type of mapping (transfer function) is also called position control.

http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html

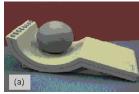
Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Flying Mice (II)

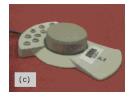
- The advantages of these "flying mice" devices are:
 - Easy to learn, because of the natural, direct mapping.
 - Relatively fast speed
- disadvantages to this class of devices:
 - Limited movement range. Since it is position control, hand movement can be mapped to only a limited range of the display space.
 - Lack of coordination. In position control object movement is directly proportional to hand/finger movement and hence constrained to anatomical limitations: joints can only rotate to certain angle.
 - Fatigue. This is a significant problem with free moving 6 DOF devices because the user's arm has to be suspended in the air without support.
 - Difficulty of device acquisition. The flying mice lack persistence in position when released.

The form factor of devices has a significant impact on the pointing performance. E.g. Fingerball vs. glove

http://www.almaden.ibm.com/u/zhai/papers/siggraph/final.html



Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany


MMI 2005/2006

Stationary devices (I)

- devices that are mounted on stationary surface.
- Have a self-centering mechanism
- They are either isometric devices that do not move by a significantly perceptible magnitude or elastic devices that are spring-loaded.
- Typically these devices work in rate control mode, i.e. the input variable, either force or displacement, is mapped onto the velocity of the cursor.
- The cursor position is the integration of input variable over time.

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

MMI 2005/2006

Stationary devices (II)


- isometric device (used with rate control) offers the following advantages:
 - Reduced fatigue, since the user's arm can be rested on the desktop.
 - Increased coordination. The integral transformation in rate control makes the actual cursor movement a step removed from the hand anatomy.
 - Smoother and more steady cursor movement. The rate control mechanism (integration) is a low pass filter, reducing high frequency
 - Device persistence and faster acquisition. Since these devices stay stationary on the desktop, they can be acquired more easily.
- isometric rate control devices may have the following disadvantages:
 - Rate control is an acquired skill. A user typically takes tens of minutes, to gain controllability of isometric rate control devices.
 - Lack of control feel. Since an isometric device feels completely rigid

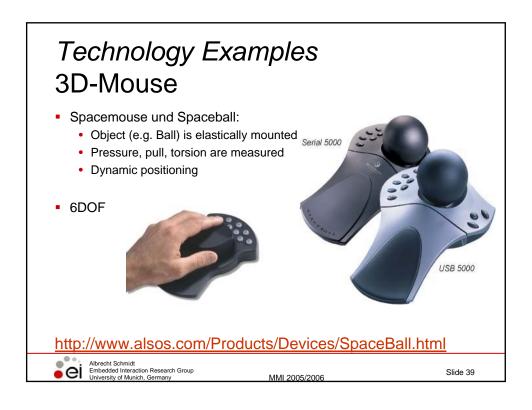
Multi DOF Armatures

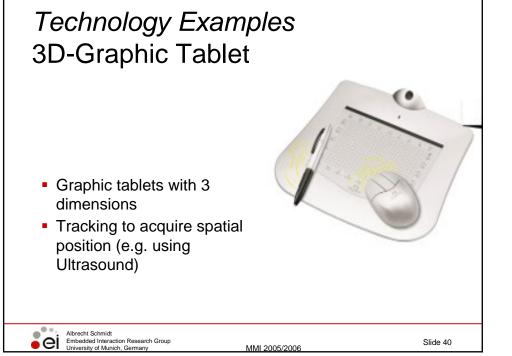
- multi DOF input devices are mechanical armatures.
- the armature is actually a hybrid between a flying-mouse type of device and a stationary device.
- Can be seen as a are near isotonic with exceptional singularity positions position control device (like a flying mouse)
- has the following particular advantages:
 - Not susceptible to interference.
 - Less delay: response is usually better than most flying mouse technology
 - Can be configured to "stay put", when friction on joints is adjusted and therefore better for device acquisition.
- drawbacks:
 - · Fatigue: as with flying mouse.
 - Constrained operation. The user has to carry the mechanical arm to operate, At certain singular points, position/orientation is awkward.
- This class of devices can also be equipped with force feedback, see later Phantom Device

MMI 2005/2006

Slide 37

Technology Examples Data Glove

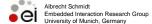

- Data glove to input information about
 - · Orientation, (roll, pitch)
 - Angle of joints
 - Sometimes position (external tracking).
- Time resolution about. 150...200 Hz
- Precision (price dependent):
 - Up to 0,5 ° for expensive devices (> 10.000 €)
 - Cheap devices (€100) much less



Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

MMI 2005/2006

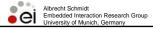
- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options


Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Force Feedback Mouse

- Pointing devices with force feedback:
 - · Feeling a resistance that is controllable
 - Active force of the device
 - · Common in game controllers (often very simple vibration motors)

- Examples in desktop use
 - · Menu slots that snap in
 - · feel icons
 - Feel different surfaces
 - · Can be used to increase accessibility for visually impaired
- Logitech iFeel Mouse http://www.dansdata.com/ifeel.htm


Phantom – Haptic Device

- high-fidelity 3D force-feedback input device with 6DOF
- GHOST SDK to program it

www.sensable.com

MMI 2005/2006

Specification: PHANTOM® Omni™ Haptic Device

Footprint (Physical area	6 5/8 W x 8 D in.			
device base occupies on desk)	~168 W x 203 D mm.			
Range of motion	Hand movement pivoting at wrist			
Nominal position resolution	> 450 dpi. ~ 0.055 mm.			
Maximum exertable force at nominal (orthogonal arms) position	0.75 lbf. (3.3 N)			
Force feedback	x, y, z			
Position sensing [Stylus gimbal]	x, y, z (digital encoders) [Pitch, roll, yaw (± 5% linearity potentiometers)			
Applications	Selected Types of Haptic Research and The FreeForm® Concept™ system			
Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany	MMI 2005/2006 Slide 45			

Examples:

Programming Abstractions for haptic devices

- GHOST SDK http://www.sensable.com/products/phantom-gho-st/ghost.asp
- OpenHaptics[™] Toolkit <u>http://www.sensable.com/products/phantom_ghost/OpenHapticsToolkit-intro.asp</u>
 - toolkit is patterned after the OpenGL® API
 - Using existing OpenGL code for specifying geometry, and supplement it with OpenHaptics commands to simulate haptic material properties such as friction and stiffness

- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

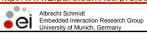
Taxonomy for Input Devices (Buxton)

- continuous vs discrete?
- agent of control (hand, foot, voice, eyes ...)?
- what is being sensed (position, motion or pressure), and
- the number of dimensions being sensed (1, 2 or 3)
- devices that are operated using similar motor skills
- devices that are operated by touch vs. those that require a mechanical intermediary between the hand and the sensing mechanism

Taxonomy for Input Devices (Buxton) Tablet & Tablet & Light Pen Joystick Sliding Touch ¦ Touch • Screen Sprung Joystick Trackball Rotary Pot | Treadmill Mouse X/Y Pad Torque Isometric Joystick rotary fixed with fixed finger finger vertical location http://www.billbuxton.com/lexical.html Buxton, W. (1983). Lexical and Pragmatic Considerations of Input Structures. Computer Graphics, 17 (1), 31-37. Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany MMI 2005/2006

"...basically, an input device is a transducer from the physical properties of the world into the logical parameters of an application." (Bill Buxton)

MMI 2005/2006



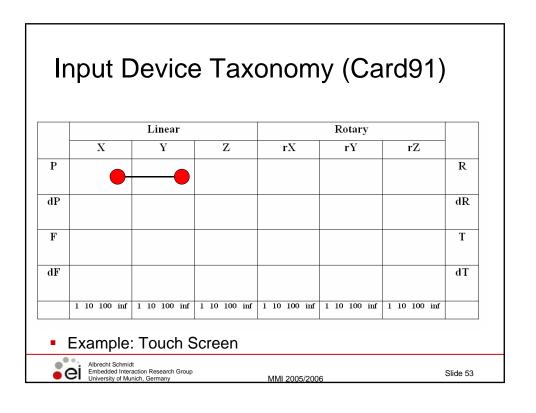
Physical Properties used by Input devices (Card91)

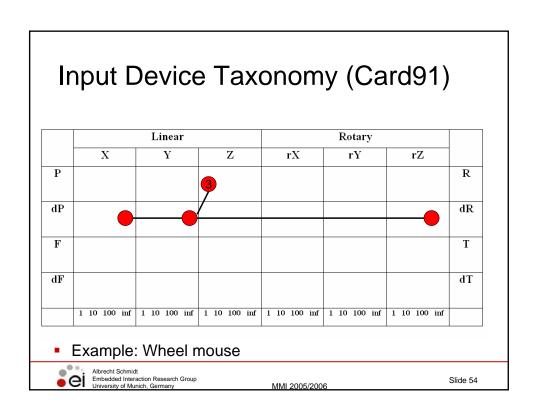
	Linear	Rotary		
Position				
Absolute	P (Position)	R (Rotation)		
Relative	dP	dR		
Force				
Absolute	F (Force)	T (Torque)		
Relative	dF dT			

Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122

http://www2.parc.com/istl/projects/uir/pubs/items/UIR-1991-02-Card-TOIS-Morphological.pdf

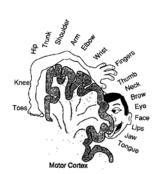
MMI 2005/2006


Clido E1

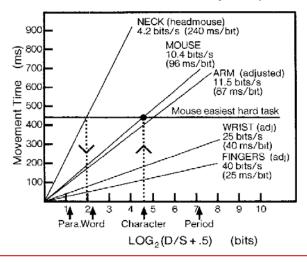

Input Device Taxonomy (Card91)

	Linear			Rotary			
	X	Y	Z	rX	rY	rZ	
P							R
dP							dR
F							T
dF							dΤ
	1 10 100 inf						

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany


MMI 2005/2006

Design Space for Input Devices


- Footprint
 - Size of the devices on the desk
- Bandwidth
 - Human The bandwidth of the human muscle group to which the transducer is attached
 - Application the precision requirements of the task to be done with the device
 - Device the effective bandwidth of the input device

Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Movement time for Different Devices / Muscle Groups (Card91)

• ei

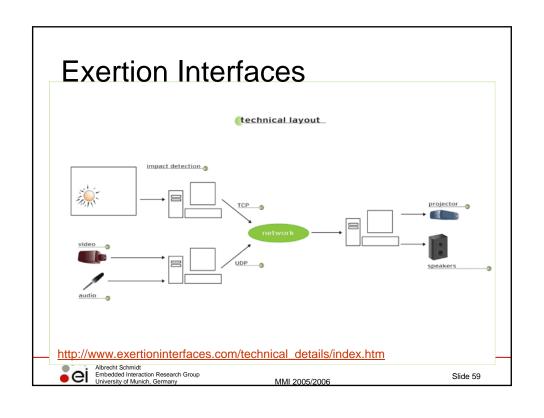
Albrecht Schmidt Embedded Interaction Research Group University of Munich, Germany

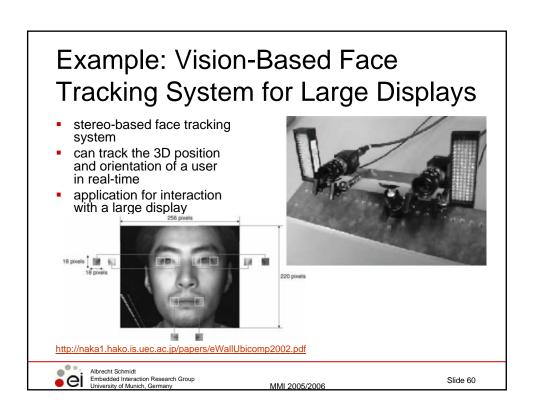
MMI 2005/2006

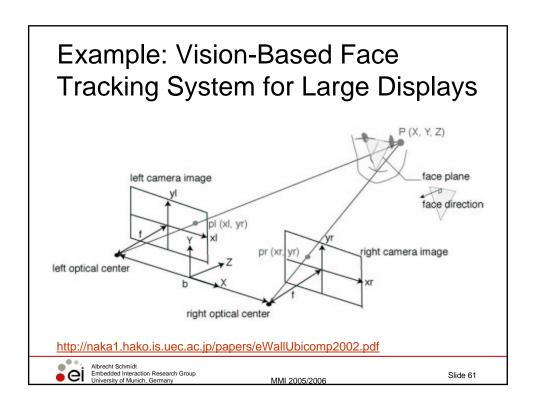
- 3.1 Factors that Influence the User Interface
- 3.2 Analyzing work processes and interaction
- 3.3 Conceptual Models How the users see it
- 3.4 Analyzing existing systems
- 3.5 Describing the results of the Analysis
- 3.6 Understanding the Solution Space
- 3.7 Design space for input/output, technologies
 - 3.7.1 2D input
 - 3.7.2 3D input
 - 3.7.3 Force feedback
 - 3.7.4 Input device taxonomy
 - 3.7.5 Further forms of input and capture
 - 3.7.6 Visual and audio output
 - 3.7.7 Printed (2D/3D) output
 - 3.7.8 Further output options

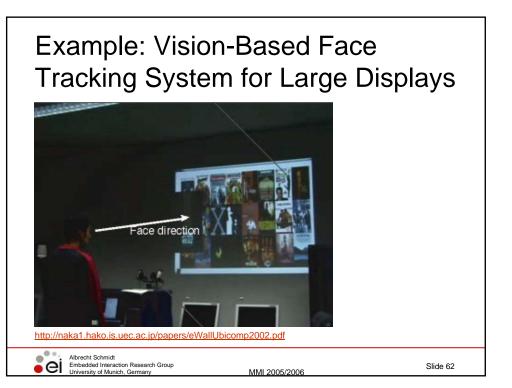
Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

Exertion Interfaces

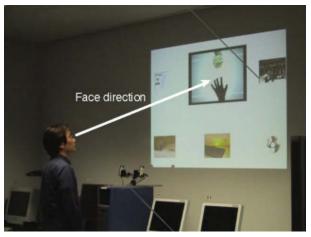


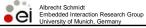

Video


http://www.exertioninterfaces.com/technical_details/index.htm



Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany

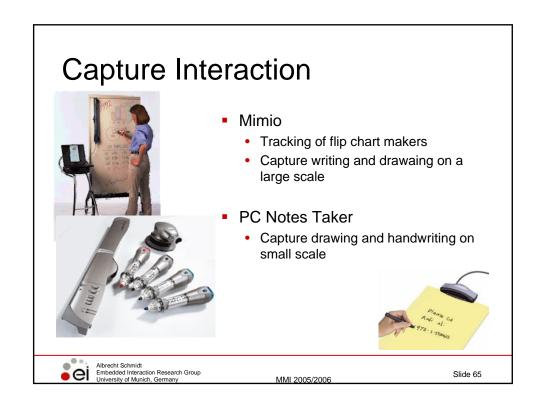


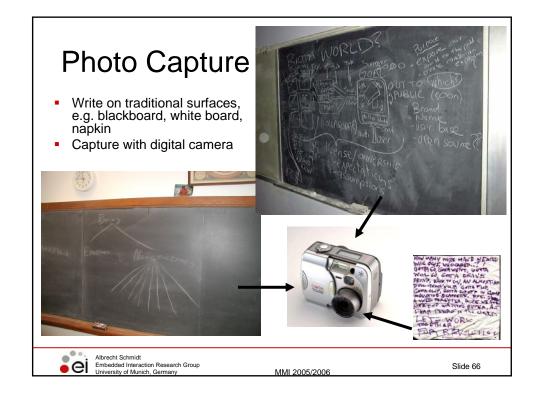


Example: Vision-Based Face Tracking System for Large Displays

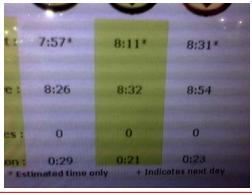
http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf

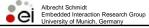
MMI 2005/2006


Clido 63


Input beyond the screen

- Capture (photo, tracking)
- Interactive modeling

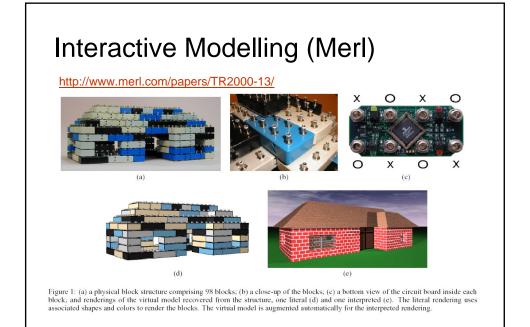

MMI 2005/2006

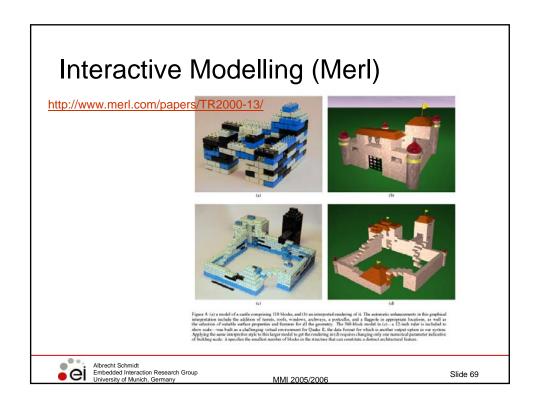


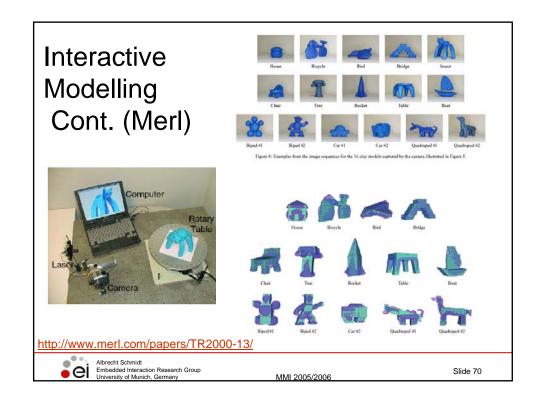
ne Capture

 New applications due the availability of capture tools

- Paper becomes an input medium again (people just take a picture of it)
- Public displays can be copied (e.g. taking a picture of an online time table on a ticket machine)




Albrecht Schmidt
Embedded Interaction Research Group
University of Munich, Germany


MMI 2005/2006

Slide 67

Slide 68

References

- Computer Rope Interface http://web.media.mit.edu/~win/Canopy%20Climb/Index.htm
- Sensor Systems for Interactive Surfaces, J. Paradiso, K. Hsiao, J. Strickon, J. Lifton, and A. Adler, IBM Systems Journal, Volume 39, Nos. 3 & 4, October 2000, pp. 892-914. http://www.research.ibm.com/journal/si/393/part3/paradiso.html
- Window Tap Interface http://www.media.mit.edu/resenv/Tapper/
- Vision-Based Face Tracking System for Large Displays http://naka1.hako.is.uec.ac.jp/papers/eWallUbicomp2002.pdf
- http://vered.rose.utoronto.ca/people/shumin_dir/papers/PhD_Thesis/Chapter2/Chapter23.html
- http://www.siggraph.org/publications/newsletter/v32n4/contributions/zhai.html
- http://www.merl.com/papers/TR2000-13
- Card, S. K., Mackinlay, J. D. and Robertson, G. G. (1991). A Morphological Analysis of the Design Space of Input Devices. ACM Transactions on Information Systems 9(2 April): 99-122 http://www2.parc.com/istl/projects/uir/pubs/items/UIR-1991-02-Card-TOIS-Morphological.pdf
- Logitech iFeel Mouse <u>http://www.dansdata.com/ifeel.htm</u>
- Exertion Interfaces <u>http://www.exertioninterfaces.com/technical_details/index.htm</u>

MMI 2005/2006

lide 71