Logging Usage of AJAX Applications
With the “UsaProxy” HTTP Proxy

Richard Atterer
Media Informatics Group
University of Munich
Amalienstr. 17
80333 Munich, Germany

richard.atterer@ifi.Imu.de

ABSTRACT

This paper shows how to use the UsaProxy HTTP proxy to
perform logging of user activity for AJAX web applications.
UsaProxy is a special-purpose HTTP proxy which modifies
HTML pages before forwarding them to the client browser.
It adds JavaScript code which collects data about mouse
movement, clicks, key presses and other types of interaction
without affecting the user’s browsing experience in any way.
Using Gmail as an example for an AJAX application, the
paper explains in detail how to prepare for a UsaProxy-based
user test and how to interpret the log files generated by the
system.

1. INTRODUCTION

Web applications which make heavy use of JavaScript and
DOM pose a problem when trying to obtain meaningful log-
ging data: Much of the code of an AJAX application runs
on the client side, modifying the appearance of the page and
processing user input without contacting the web server. In-
stead, the server is only contacted in case data needs to be
obtained from the server’s database or stored back into the
database.

This approach offers several advantages for developers and
users of AJAX applications: The web application can often
respond to user actions much more quickly, and fewer server
resources are needed because the server does not need to
recreate the entire graphical layout whenever one detail of
the layout changes.

However, from the point of view of someone who wants to
obtain detailed information about what people are doing on
their web pages, an AJAX application presents a challenge:
The data recorded by HT'TP servers in their log files is not
sufficient to get detailed usage information. With AJAX,
there is a separation of client-side code for the user interface
and server-side code for application data retrieval/storage.
This means that the wrong kind of data (the client-server
data exchange) is logged in the server’s log, and some crucial
information is missing, such as timestamps of specific user
actions.

Thus, server-side logs are insufficient when trying to ob-
tain logging data for user interaction. This includes the
following scenarios:

e Usability tests of AJAX applications — as mentioned
before, not all data (like timestamps of some clicks)
can be obtained

e Creation of general usage statistics, for example to ob-
tain data like “Customers which were interested in the
currently viewed item were also interested in...”

e Analysis of individual users’ usage patterns, e.g. for
self-adapting websites

In this paper, a solution for logging user interaction with
AJAX applications is presented. In section 2, the ideas be-
hind the logging system “UsaProxy” [1] are explained. Sec-
tion 3 gives a detailed account of the different types of log
output created by UsaProxy. Next, section 4 explains how
to analyse an AJAX application for a UsaProxy-supported
usability test, using Google’s Gmail application as an ex-
ample. Finally, section 5 presents some concluding remarks
and discusses possibile improvements to UsaProxy.

2. USAPROXY - AN AJAX-BASED AP-
PROACH TO LOGGING

To address the issues that are mentioned in the previous
section, further logging data in addition to the server-side
logs needs to be obtained. After taking a look at related
efforts [1, section 6], it was decided that the best way to
log user interaction for AJAX applications is to also use
AJAX technology for the logging task. However, this task
was made considerably more complex than one would think
at first because of various criteria such as the fact that the
logging should not be invasive. The following sections out-
line the different requirements and the resulting design and
implementation details.

Non-invasive and flexible logging system No
changes should be necessary to the server-side pages, as this
would not be possible for many production websites. Fur-
thermore, no installation of additional software should be
necessary at the client side — in the case of volunteers who
participate in a usability study from home, this would pose
too many technical problems or would not be accepted by
the volunteer due to security concerns.

Thus, the tracking is implemented in the form of an HTTP
proxy. This approach has been employed by other software
such as WebQuilt [2], but none of the existing solutions al-
lows detailed logging of AJAX applications without requir-
ing the installation of client-side software.

It should be noted that in contrast to “normal” HTTP

Request Request
D —— B —_—
- -
Image Image
Server
Request Request
D —_— —_—
- -
annotated text/html
HTML Response
ID for file DB/ \ HTTP headers

> oy &content

log file
file DB

Figure 1: UsaProxy passes on images and other data
unmodified (top). HTML content is modified (bot-
tom) by adding special JavaScript. Also, the server
response is recorded and identified via a logged ID.

proxies, UsaProxy does not perform any caching of content,
it only acts as a filter between the client and the server.

Detailed logging of most interaction on the web
pages The system needs to allow recording of as many
user actions as possible. This is achieved by executing
JavaScript code inside the user’s browser. For the current
version of the system, the logged information includes the
following:

¢ Loading and unloading of HTML pages. Unloading
means that the window for the current page is closed or
that a different web page will be loaded and displayed
in it shortly.

¢ Resizing of the browser window

e Giving the input focus to the window or taking it away

e Mouse clicks on the page. UsaProxy records both the
page coordinates (from the top left corner of the doc-
ument) and the HTML element that the user clicked
on.

e Mouse movements, in page coordinates

e Scrolling inside the browser window

e Key presses

Logging of mouse movement data using JavaScript and
a manually prepared HTML page was demonstrated in [3].
UsaProxy improves this technique, it logs more detailed in-
formation and automates the process of adding JavaScript
to pages.

In addition to the client-side actions outlined above, Us-
aProxy also records the browser’s HTTP requests and cor-
responding server HT'TP response headers. In those cases
where the response has a Content-Type of text/html, the en-
tire response body is also recorded. All log data is written
to the file system of the computer that the proxy runs on.

Section 4.2 of [1] describes in detail how the UsaProxy im-
plementation manages to execute logging code on the user’s
browser and to record the log data. See figure 1 for an

overview. The implementation can be regarded as AJAX-
based because just like normal AJAX applications, it uses
JavaScript and DOM to achieve its purpose. Briefly, the
proxy works as follows:

e The client’s browser sends a request to the server via
UsaProxy. If the corresponding server response is not
of type text/html (e.g. if it is an image), the response
is simply passed back to the client.

e If the response is text/html, the proxy modifies the
page before delivering it to the client, by inserting the
following HTML code in the page header:

<script src="http://lo.lo/proxyscript.js’ type="text/javascript’>

e Having downloaded the page, the client requests the
above URL. Requests for the special site lo.lo are not
forwarded by the proxy, instead they are intercepted.
In this case, the proxy sends JavaScript code.

e The proxy’s JavaScript code is executed by the browser
in the context of the current page, it has all privileges
to monitor the user’s behaviour.

e When the client-side JavaScript code wants to send log
data to the proxy, it does so by making a request to
http://lo.lo/img.jpg?string-to-be-logged. In this case, the
proxy takes notice of the string to be logged. It replies
with a “404 not found” response (which is ignored by
the client-side JavaScript).

Invisible, AJAX-compatible logging Another re-
quirement for the logging system was that the user’s brows-
ing experience should not be altered in any way, but that at
the same time, AJAX applications can be monitored with
the same accuracy as normal web pages. This goal has been
achieved: The proxy’s JavaScript runs silently on the user’s
browser and does not need a lot of outgoing bandwidth to
transmit its log data back to the proxy. Furthermore, special
care has been taken to ensure that the JavaScript does not
interfere in any way with the AJAX application’s JavaScript
code. Finally, the system is AJAX-compatible because the
proxy’s JavaScript can follow all modifications to the DOM
tree, so it will e.g. always report the correct target element
for mouse clicks, even if that element did not exist at the
time the page was first loaded into the browser.

3. USAPROXY LOG FILE ANALYSIS

When UsaProxy is used to log user interaction on a web
page, the resulting usage data is written to a log file. This
section gives a more detailed overview of the different types
of log entries. It is based on the list of logged information
that was presented in the previous section. The general
format of a line in the log is as follows:

client-IP date,time page-url more-details

A typical example for the first part of each line, without the
additional event-specific details, is the following:

141.84.120.25 2006-12-31,23:59:59 http://example.org

The URL may also include parameters of a HIT'TP GET
request. In the examples in the rest of this section, only the
“more-details” part is shown.

Transmission of text/html content to the client
Whenever a web page with text/html content passes through

the proxy, the proxy records the entire HT'TP request sent
by the browser as well as the server response. This is useful
for later analysis of the content that was sent, especially in
those cases where HTML was generated dynamically by the
server. Non-HTML content is not recorded to reduce the
amount of storage needed by the proxy.

In addition to the standard log entry fields, an ID is
logged. It uniquely identifies the files to which the request
and response have been written:

serverdata 15

Loading and unloading of HTML pages The client-
side JavaScript signals to the proxy when a page has been
loaded completely and when a page is left for another page
(or the browser window is closed):

load width=1394;height=777
unload

Unfortunately, the unload event does not work reliably with
many browsers, so it will often be missing from the log.

Resizing of the browser window Whenever the user
(or JavaScript on a page) resizes the page window, an ap-
propriate log entry is generated:

resize width=1050;height=555

Changes of the input focus The proxy records when-
ever the browser window gains focus (i.e. the user clicked
inside it, used Alt-Tab to switch to it, or similar) or loses
focus (e.g. because the user clicked inside another applica-
tion’s window, switched to another browser tab etc.):

focus
blur

Mouse clicks For mouse clicks, the tracking code takes
note of the coordinates of the click, which is measured in pix-
els relative to the upper left corner of the HTML page. If the
target element can be identified via its name or id, that in-
formation is also written to the log. For unnamed elements,
the element name is recorded. Even clicks on the scrollbar
(which usually mark the start of mouse-based scrolling) can
be detected with some browsers. Finally, if the clicked-on
element is an anchor, the target URL as well as the link text
is logged:

click x=57;y=230 target=id:ds_all
click x=144;y=210 target=name:x
click x=512;y=305 target=unknown:DIV
click x=1260;y=3420 target=unknown:scrollbar
click x=292;y=853
target=link:http: //example.org+linktext:Click here

Mouse movement All movements of the mouse pointer
over the browser window are written to the proxy’s log file.
However, if every JavaScript onmousemove event were trans-
mitted back to the proxy, this would take up too much band-
width, so the coordinates are only logged with a rate of
about one sample every 300 ms.

mousemove x=913;y=674

Additionally, mouseover entries provide information on the
HTML element over which the pointer currently hovers. The
different possibilities are identical to the click entries, for
example:

mouseover x=57;y=230 target=id:ds_all

Scrolling Similar to mouse movements, scrolling coordi-
nates are only recorded with reduced temporal resolution.
The logged information is the current vertical offset of the
viewport from the document top. For example, a y value
of 42 means that the topmost 42 pixels of the page are not
currently visible, and 0 means that the page is scrolled to
the top.

scrolledTo y=42

Key presses If the user presses a key, the log output
shown below is produced. Keypresses are usually also no-
ticed even if the user invoked a keyboard shortcut of the
browser, such as pressing Ctrl-F to start searching for text
inside the page. (Unfortunately, the text that is entered in
the browser’s search window cannot be determined.)

keypress key=u

4. PREPARING THE USER TEST OF AN
AJAX APPLICATION

In the previous sections, the UsaProxy system and its log
output were introduced. This section describes the prepa-
rations which are necessary to perform a usability test of an
AJAX application like Google’s Gmail service.

Unfortunately, using the UsaProxy tracking system with
Gmail is not straightforward due to the fact that the Gmail
login uses HT'TPS, which is not currently supported by Us-
aProxy. A future version of UsaProxy will support HTTPS
(and tracking of user actions on encrypted pages). For the
moment, one needs to temporarily reconfigure the browser
for the login to succeed. As the main Gmail application
does not use encrypted HTTP connections, UsaProxy can
be re-enabled once the user is logged in.

When preparing for a usability test or similar user action
tracking task, the primary effort (apart from setting up the
proxy) is to analyse the AJAX application so that the logs
created by UsaProxy can later be successfully interpreted.

For example, if one aspect of a usability test is to measure
the time taken by a user to accomplish a specific task after
entering a website, then one needs to identify the range of
possible log entries which mark the start and end of the task.

Similarly, if the aim of the test is to analyse users’ nav-
igation patterns when using a web appication, the possible
paths (e.g. clicks vs. keyboard shortcuts) need to be linked
to specific log entries.

Generally, two approaches are possible:

e Perform a sample session of the user tasks, then look
at the logs created by UsaProxy and identify the “ob-
vious” log entries which are of interest.

¢ Analyse the DOM tree created by the AJAX applica-
tion and find the nodes which are of interest.

With most applications, the first approach is less compli-
cated and quickly supplies the desired data. However, some-
times the same user action (e.g. a click) may cause different
actions (and thus log entries) by the application’s JavaScript
— in these rare cases, a more in-depth look at the DOM tree
may be necessary.

A simple example where the same user action can cause
different log entries is when the same button on the page
is present on several different layers, and only one layer is

Jwrion

Fle Edit Search View

@ # [Ritpsmai.googl 7auth=D WECZF6rXmcROZY-PrvadcgamZpw2iXeishucuqc_7A2XahHwBOKkrumnehb 7. \nspect‘
- Document - DOM Nodes >~ [[£ Object - Javascript Object >

nodeName [id class__|=||[Property [Value |=
SBODY [Starget [object HTMLDIVElement]

DIV dvi wstyle [oblect CSSStyleDeclaration]
£DIV dv2 innerHTML "<div id="tc_top"><table ce.
= IFRAME V2 id “co"
@ #document = parentNode [object HTMLDIVElement]
SHTML nodeName DIV
#HEAD nodeValue (nul)
#rext nodeType 1
=BODY @ childNodes [object NodeList]
=DV w firstChid [object HTMLDIVElement]
#DIV slastChid [object HTMLDIVEiement]
=DV @previoussibling [object HTMLDIVElement]
@DV nav nextsibing [object HTMLDIVElement]
©DIV co sattributes [object NamedNodeMap]
@DV ft @ ownerDocument [oblect HTMLDocument]

= SCRIPT =

‘‘‘‘‘ tRefore function insertBefare() {

atterer@gmail.com | Settings | Help | Sian out

Gox »gle [Seaschvail| Searchtraweb | SIousearchontions

o
3
=
H
e

Compose Mail Erench Fry Spam Casserole - Bake 30-40 minutes 3
L Delete Forever | _Not Spam | Refresh 1-120f12

ions
Select Al None, Read, Unread, Starred, Unstarred

(messages that have been in Spam more than 30 days will be automatically de\e(ed]
personalice a sus clientes - [arjctas y Credenciales Flas
DOWNLOAD INSTANTLY EXPENS\\/E SOFTWARES AT u

Feb5

mpi
5BucksE Febd

Tar uem Plasticas
Lani
- o =

B
=

Figure 2: The Firefox DOM inspector tool allows
the user to browse through an AJAX application’s
DOM tree (top-left part of the window) in real time.

displayed at a time. Thus, several copies of the button exist
and must be identified.

Performing a sample session When trying out the web
application in a sample session to obtain information about
those log entries which are of interest for the user test, it is
important to use a setup which is as close to the final test
setup as possible. For example, the same browser should
be used for both, as some AJAX applications may exhibit
slightly different behaviour due to browser-dependent im-
plementation details. Furthermore, an attempt should be
made to test all possible different ways of completing the
task that is given to participants of the user test.

The task of finding the interesting log entries can be made
much easier by watching the proxy log in real time as it is
being written to disc, e.g. with the tail -f command under
Linux/Unix.

For the example AJAX application, Gmail, this approach
yields good results. For instance, if we assume that the test
participants are set the task “enable POP3 access to the
Gmail mailbox”, then one can easily determine by looking
at the log that a click on the “Settings” link (id:prf_g) is
needed, followed by clicks on the “Forwarding and POP”
tab (id:pp-d), one of the “enable POP” options (id:bx_pe_2
or bx_pe_3) and the “Save Changes” button (id:ps2).

Analysing the AJAX application’s DOM tree For
large, feature-rich AJAX applications like Gmail, the struc-
ture of the dynamic HTML pages created by the application
can be very complex. Still, it may sometimes be necessary
to analyse the DOM tree in detail while preparing a user
test. However, this can be very difficult: In many cases, it
is not possible to look at the HTML pages that are sent by
the server because they usually only contain a bare frame-
work of the application’s screen layout and all the interest-
ing content is added dynamically by the application code at
runtime. An alternative would be to look at the source code
and to figure out the names and properties of the HTML
elements that one is interested in, but this is equally im-
practical, as the code of an AJAX application can be very
complex. Furthermore, many AJAX applications (includ-
ing Gmail) come with garbled JavaScript code in which all

comments have been removed and all variables given new,
meaningless names.

Luckily, tools are available for quick and detailed access
to the DOM tree of AJAX applications. Figure 2 shows the
Firefox browser’s DOM Inspector tool, with Gmail loaded
in a browser window inside it. The browser window is
fully functional which makes it possible to use the appli-
cation while analysing it. The document’s DOM tree can
be browsed in the upper left part of the window, it adapts
dynamically in real time to any changes made by the appli-
cation.

In the figure, the DOM Inspector has been used to find
the div element which contains the main page content, i.e.
the list of mails together with the controls above and below
it. Its id attribute is co.

As an example for a possible use of this information, we as-
sume that the purpose of a user test is to find out how much
of the time the mouse pointer hovers over the main content,
and how much time is spent in other areas of the page. Us-
ing the DOM inspector, we can identify all children of the
div element (e.g. by analysing the document subtree which
is available via the context menu option “Copy XML”), so
that mouseover log entries for the children can be associated
with the main content area.

S. CONCLUSION

In this paper, an overview of the UsaProxy logging system
from [1] is presented, and the output it generates is explained
in detail. Furthermore, it is shown how UsaProxy can be
used to conduct user tests of web applications. Google’s
Gmail service is used as an example to demonstrate the sys-
tem’s use with a real-world, complex AJAX application.

With the example that was used, some limitations of
the current UsaProxy implementation become clear. Fu-
ture work on the proxy will focus on support for encrypted
HTTP connections and for even more detailed logging. For
example, using the current version, it is sometimes difficult
to determine what element has been clicked on (or hovered
over) if that element does not have an id attribute.

Acknowledgement This work was funded by the BMBF
in the context of the intermedia project.

6. REFERENCES

[1] R. Atterer, M. Wnuk, A. Schmidt: Knowing the
User’s Every Move — User Activity Tracking for
Website Usability Evaluation and Implicit Interaction.
In Proceedings of the 15th International World Wide
Web Conference WWW 2006, Edinburgh, Scotland,
May 2006.

[2] J. 1. Hong, J. Heer, S. Waterson, J. A. Landay:
WebQuilt: A Proxy-based Approach to Remote Web
Usability Testing. In ACM Transactions on
Information Systems (TOIS), Volume 19, Issue 3
(July 2001), ISSN:1046-8188, pages 263285

[3] F. Mueller, A. Lockerd: Cheese: Tracking Mouse
Movement Activity on Websites, a Tool for User
Modeling. In Proceedings of the Conference on Human
Factors in Computing Systems CHI 2001, extended
abstracts on Human factors in computing systems,
Seattle, Washington, USA, April 2001

http://atterer.net/uni/www2006-knowing-the-users-every-move--user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf
http://atterer.net/uni/www2006-knowing-the-users-every-move--user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf
http://atterer.net/uni/www2006-knowing-the-users-every-move--user-activity-tracking-for-website-usability-evaluation-and-implicit-interaction.pdf
http://www2.parc.com/istl/projects/uir/pubs/items/UIR-2001-04-Heer-TOIS-WebQuilt.pdf
http://www2.parc.com/istl/projects/uir/pubs/items/UIR-2001-04-Heer-TOIS-WebQuilt.pdf
http://floydmueller.com/achievements/cheese.pdf
http://floydmueller.com/achievements/cheese.pdf
http://floydmueller.com/achievements/cheese.pdf

	Introduction
	UsaProxy -- An AJAX-based Approach to Logging
	UsaProxy Log File Analysis
	Preparing the User Test of an AJAX Application
	Conclusion
	REFERENCES -9pt

