
Connecting Pervasive Frameworks Through
Mediation

Florence T. Balagtas and Cedric Angelo M. Festin

Department of Computer Science
University of the Philippines

Diliman, Quezon City, Philippines
florence.balagtas@up.edu.ph, cmfestin@up.edu.ph

http://engg.upd.edu.ph/cs/index.html

Abstract. Context information helps an application decide on what to
do in order to adapt to its user’s needs. To easily develop ubiquitous
applications, there has been increased research in the design and devel-
opment of frameworks called pervasive computing frameworks. Although
these frameworks help application developers create ubiquitous applica-
tions easily, interoperability has been a problem because of the different
representation of context information and protocols used. This research
attempts to solve this problem by creating a Context Information Medi-
ator (CIM) which will serve as a translation gateway between different
applications created using different frameworks. To test our system, we
developed two versions of an inventory system application that keeps
track of items inside a building. The idea here is to let these applications
communicate with each other and share information through the CIM.

1 Introduction

Pervasive computing is a computing paradigm that aims to make digital en-
vironments composed of ubiquitous applications that are sensitive, responsive
and adaptive to human needs without humans actually knowing what happens
in the background [1]. Creating ubiquitous applications is quite difficult since
different types of devices and different forms of data are to be processed and
should be able to work seamlessly. To simplify the creation of ubiquitous appli-
cations, several researches in the area of pervasive computing are focused on the
creation of pervasive computing frameworks such as the Aura Framework [2],
Context-Toolkit framework [5] and One.world framework [6]. These frameworks
aim to collect raw data from diverse devices and process the collected data into
context information. These context information are then disseminated to diverse
applications that run on different devices with the concern for security to avoid
unauthorized use of these information [7]. The problem now lies in the represen-
tation of context information in different frameworks. Different frameworks have
different formatting of context information which prevents them from sharing
information. The need for sharing of information among different frameworks is

Y. Roberts et al. (Eds.): HiPC 2006, LNCS 4297, pp. 313–325, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

314 F.T. Balagtas and C.A.M. Festin

important to provide interoperability which is one of the major goals of pervasive
computing.

The problem of interoperability has been present in several areas of comput-
ing and different types of mediator systems have been developed in order to
address this problem. The Context Interchange Architecture of Database sys-
tems (COIN) [8] architecture has tried to detect and reconcile semantic conflicts
among different database systems. The P2P gateway [9] has aimed to facilitate
information sharing among different peer-to-peer file sharing systems that uses
different protocols. The Internet architecture has been designed to facilitate the
sharing of computer resources present in different networks through the use of
the gateway.

This research aims to create a Context Information Mediator (CIM) which
is used to get information from different servers that uses different frameworks,
and convert these information into data which can be understood by the other
frameworks. The CIM framework is developed by using the Java 2 Platform API
and uses XML to represent the data in the system. The principles of the Internet
architecture were applied when designing the protocols of the CIM.

2 Design and Implementation

This section discusses the steps to achieve the goal of creating a Context Infor-
mation Mediator.

2.1 Inventory Application Implementation

The application that we have developed is an inventory system for an office area
which similar to the Smart Toolbox and Smart Tool Inventory of [11]. What
our inventory system application does is that, it keeps track of where a certain
item in the inventory is located inside a building. This is done by having sensors
monitoring certain areas of the building in order to know where certain items
are located. For the purpose of this research, we will simulate the environment
that contains the items and the sensors through a graphical user interface (GUI)
made using Java Swing. The GUI will show a building that contains three rooms,
wherein each room contains several inventory items. Dragging the items in our
simulator simulates movement of an item from one location to the next.

The inventory system is composed of two major components. The pervasive
inventory system which gets the location of the inventory items and stores this in-
formation, and the application interface which represents the client applications
that subscribes to the pervasive inventory system in order to get information
about the items. We have created two versions of this sample inventory applica-
tion. The first version was created using the Aura Contextual Service Interface
version 2.3 of the Aura framework. The second version was created using the
Context-toolkit framework 2003 release. The idea here is to let the two applica-
tions that are written using the two different frameworks communicate with each
other and share information through the Context Information Mediator (CIM).

Connecting Pervasive Frameworks Through Mediation 315

2.2 Context Information Mediator Implementation

The Context Information Mediator architecture consist of two general commu-
nicating components, the client and the CIM server. Figure 1 shows a general
view of the CIM architecture. Take note that although the figure shows only
two clients connected to CIM, the CIM server can handle many clients. We
have chosen to design our system base on the client-server model of computer
networks since it is already a well established model and is mostly used in net-
working today. The client-server model is a design in computer networks in which
client machines request and receive service by querying the server. The server
then sends the needed information to its clients. This model is especially effec-
tive when clients and server have their own special tasks that they routinely
perform.

Fig. 1. General view of the CIM architecture

CIM Client Interface. The CIM Client Interface sits below the client1 system
and is responsible for forwarding and receiving information to and from the CIM
server. In this part of the CIM architecture, we used the layering strategy that
is used in computer networks.

CIM Server. The CIM Server is responsible for gathering all the context
information and sends the converted information to its clients. Table 1 shows
the subcomponents of the CIM server and their functions.

CIM Data Packets. The CIM data packet contains the information sent be-
tween the clients and the CIM server. The CIM packet is divided into two main
sections, the header and the data section. The header section is further sub-
divided into two which is the packet type and the client type. The packet type
identifies what type of packet is sent while the client type identifies what type
of client has sent the packet. The data section contains the main data sent by
1 In this section, the term client refers to the different servers implemented in different

frameworks that requests and sends context information to the CIM server.

316 F.T. Balagtas and C.A.M. Festin

the sender of the packet. Table 2 shows the different packet types and their
descriptions.

Table 3 shows the different types of senders supported by CIM. This helps
CIM distinguish from which type of sender the packet was from and helps it
decide on how to convert the data contained in the packet.

Table 1. CIM Server Subcomponents

SubComponent Name Function

Client Request Listener Responsible for listening to client requests to connect
to CIM. It grants the client’s request and transfers
the request to the Client Registration Manager.

Client Registration Manager Responsible for asking the client for registration
information such as client type (Aura or Context-
Toolkit) and is also responsible for assigning a
unique identifier to the client. Once the registration
process has been done, it assigns a Client Thread
Manager to that particular client and the client can
now send and receive context information from
the CIM server.

CIM Client Thread Managers Responsible for handling context information received
from a particular client assigned to it and stores the
data to a central repository. It is also responsible for
converting and sending context information that is
not present in the client. Aside from that it also
monitors if a client is still active by sending AYA (Are
You Alive) messages to the client. Once it has detected
the client has been disconnected, it informs the main
CIM server that which then terminates that client
thread manager.

The data section of the CIM packet contains data that is formatted in XML.
Although both Aura and Context-toolkit applications convert their data to
XML, they still have different representations of the information modeled in
XML.

Shown in Figure 2 is a snippet of the XML file in the Aura framework that
contains the item FAX with item ID number 10004 located at room MH 215
together with the time it was moved.

Shown in Figure 3 is a snippet of the XML file for the Context-Toolkit frame-
work that contains the item iMac with item ID number 10001 located at room
MH 215 together with the time it was moved.

CIM Translation. This section will describe how the data is translated from
the client to the CIM server and vice versa.

Connecting Pervasive Frameworks Through Mediation 317

Table 2. CIM Packet Types

Packet Type Description

REGREQ Sent by the CIM Server to request for registration
information from the client

REGOK Sent by the CIM Server to the the client if registration is
successful

REGFAILED Sent by the CIM Server to the client if registration failed
REGDETAILS Sent by the client as reply to the REGREQ packet. This

contains information regarding the client
GOODBYE Sent by client/server to signify termination
NEWCONTEXTINFO Sent by client/server that contains the new context

information
AYA Sent by client/server to ask if a client/server is still alive
IAA Sent by client/server as a reply to the AYA packet

Table 3. CIM Sender Types

Sender Type Description

AURACLIENT Sender is from the Aura Framework.
CTKCLIENT Sender is from the Context-Toolkit Framework.
CIMSERVER Sender is the CIM Server.

Fig. 2. XML format in Aura

Fig. 3. XML format in Context-Toolkit

318 F.T. Balagtas and C.A.M. Festin

CIM Client Interface Sends Data to CIM Server. One of the responsibilities
of the CIM Client interface is to send new context information obtained by the
client system to the CIM server. Before it sends the new data to the CIM server, it
first extracts the DataObject (for Context-toolkit clients) or QueryResult object
(for Aura clients) that contains the new information from the client system. It
then starts to create a CIM packet that will be sent to the CIM server. The
CIM packet is created by first appending the necessary headers. The following
headers will be added to the packet: NEWCONTEXTINFO for the packet type
and AURACLIENT or CTKCLIENT header for the client type. Finally, the
XML form of the object extracted from the client is then appended to the data
section of the packet. The XML form of the DataObject of a Context-toolkit
client is created by using the XMLEncoder class of the Context-toolkit API. It
creates an XML form of the DataObject that contains the necessary tags and
inventory item information. For the XML form of the QueryResult object of an
Aura client, it is created by using the CimXMLEncoder class of the CIM API.
The CimXMLEncoder is adapted from the XMLEncoder of the Context-toolkit
API. After the packet has been created, it is then sent to the CIM server.

CIM Server Translation. After the CIM Server has received a packet of type
NEWCONTEXTINFO from its clients, it first determines the client type of the
packet. It then forwards the data section of the packet to the translator that
handles the translation of data for that certain client type. After the inventory
item information has been extracted from the packet, the inventory database
that contains all the inventory data gathered from the different clients are then
updated. After the inventory database has been updated, the CIM server will
create packets that contains the latest inventory information and will send it to
the other clients. In this case, since there are two types of clients currently sup-
ported by the CIM framework, the CIM server will create two types of packets,
one for the Aura clients and one for the Context-toolkit clients.

CIM Client Interface Receives Data from CIM Server. When the CIM Client
receives new context information from the CIM Server, it then extracts the data
from the packet and creates it into a DataObject (for Context-toolkit clients)
or QueryResult object (for Aura clients). Client applications have a choice of
calling several methods from the CimClient class to get the new data. Table 4
shows the methods and their description.

CIM Protocols. The CIM architecture has several protocols for establishing
connection between client and server, terminating a connection and the exchange
of data between client and server.

Establishing a Connection with the CIM Server. To establish a connection be-
tween the CIM Server and the CIM client, the client connects to the CIM Client
Request Listener, which then forwards the request to the CIM Client Registra-
tion Manager. The CIM Client Registration Manager asks the client for regis-
tration information. If the client has successfully sent all the requirements, the

Connecting Pervasive Frameworks Through Mediation 319

Table 4. CIM Client class data retrieval methods

METHOD DESCRIPTION

getNewItemListFromCim() This method returns a java.util.Vector object
that contains the list of items in the inventory.
This can be used by either an Aura client
or a Context-toolkit client.

getNewItemListFromCimForAura() This method returns a QueryResult object
that contains the list of items in the inventory.
This is for Aura clients only.

getNewItemListFromCimForCtk() This method returns a DataObject object that
contains the list of items in the inventory. This
is for Context-toolkit clients only.

CIM Client Registration Manager sends it a REGOK message that signifies its
successful connection to the CIM server. It then assigns a CIM Client Thread
manager that is responsible for communicating with the connected client. In
cases wherein a client was unable to satisfy the requirements, the CIM Client
Registration Manager sends the client a REGFAILED message and disconnects
the client.

Terminating a Connection with the CIM Server. In cases wherein the client
application leaves or if the CIM Server terminates, each sends a GOODBYE
message in order to signal the other that it is leaving. These scenarios show
cases wherein there is a clean termination of both client and server. However,
there are cases in which either of the two crashes and will not be able to send
a GOODBYE message. To resolve this problem, we have created the AYA (Are
you alive) packet that is constantly sent by both server and client to each other
in order to monitor if the other still exists. The client/server that receives this
type of message should reply with a IAA (I am alive) message in order to signify
that it is still alive. In cases wherein the client/server is unable to reply with an
IAA message, the sender of the AYA packet will terminate its connection with
the dead client/server.

Context-Information Exchange. The CIM client sends the CIM server new
context-information about its system. It does this by sending a packet of type
NEWCONTEXTINFO which contains the new information. When the CIM
server receives this type of information, it then updates its database and creates
packets containing the newly updated information for both Aura and Context-
toolkit clients. It then sends the packets to the other clients connected to CIM.

3 Performance Evaluation and Results

The experiments that we have conducted runs a single CIM server and one or
more CIM clients. The first batch of experiments have been done by using an

320 F.T. Balagtas and C.A.M. Festin

Apple Powerbook, with a 1.5 Ghz PowerPC G4 processor and 512 MB DDR
SDRAM. All applications both client and server have been run in this single
computer. For the second batch of experiments, we run the CIM server in an
Intel PC, with a 2.66 GHz Pentium 4 processor and 512 MB RAM, while all the
clients run on the Apple Powerbook. The clients and server are connected via
a local area network (LAN). To start the experiments, we run the CIM server
which waits for clients to connect to it. We then run the environment simulator
that shows a graphical user interface of a building with three rooms, and the
eight inventory items. Each inventory item will be dragged from one room of the
building to the next to simulate movement of items. For the experiments that
we have done, we have focused on the following parameters that are relevant to
the analysis of CIM’s performance. These parameters are data size, number of
clients connected to the CIM Server and the variety of clients connected to the
CIM Server.

Data Sizes. To get the data sizes of the packets, we have written the data that is
sent by a client to the server to a file in order to get the number of bytes a single
packet contains. The packet size varies based on the type of client that creates
the packet (Aura or Context-toolkit), and it also varies based on the number of
inventory item information the client has stored in the packet. In order to test
how the packet gets bigger as the number of items increases, we have created
packets containing 0 items up to 8 items in the inventory. We have done this three
times in order to get the average data sizes of the packets sent. Figure 4 shows
the relationship of data sizes (in bytes) to the number of items that a packet
contains. The number of items here pertains to the number of inventory items
that a certain client has information about. The Y-axis describes the average
data sizes of packets in bytes. The X-axis shows the number of items contained
in a packet. The graph shows the data sizes in bytes for both Context-toolkit and
Aura client. Observe that as the number of inventory item information increases,
the data size of the packets also increases. Also observe that the Context-toolkit
data packet is bigger compared to the Aura data packet. This is because the
data of the Context-toolkit client which represents the XML file being sent has
more tags. The average data size of a single Context-toolkit packet is 528 bytes
per item, while for a single Aura packet, we have an average of 154 bytes per
item. There is a slight variation on the data size of each packet since there is no
standard size on the information inside a packet.

Translation Time. To get the translation time of the CIM server, we have done
a variety of experiments by changing the values of the data sizes sent, changing
the number of clients connected and changing the variety of clients connected.
To test the effect of data size to the translation time of the CIM server, we
iteratively moved items to a particular room monitored by a client one by one
every n-milliseconds. As this happens, the client sends its updated inventory
information for the room that it monitors to the CIM server. At this point,
we measure how long the CIM server can convert these information base on
the adding and removing of items. For this experiment, we got the average

Connecting Pervasive Frameworks Through Mediation 321

Fig. 4. Average data sizes of packets

translation time by running this test 5 times. We did this for both Aura clients
and Context-toolkit clients.

Translation Time vs. Data Sizes. The graph in Figure 5 shows the relationship
of the data size versus the time it takes to translate a certain packet for both
Context-toolkit and Aura clients. As seen in the graph for both clients, as the
data size gets bigger, the translation time also increases. The average translation
time per data item for a Context-toolkit client is about 52.59 msecs/item, while
for the Aura client we have 52.08 msecs/item. We can see that it takes more
time to translate data for a Context-toolkit client as compared to an Aura client,
however, the difference is very minimal.

Fig. 5. Average Translation Time vs. Data Sizes

Translation Time vs. Number of Clients connected. To test the effect of number
of clients to the translation time of the CIM server, we run several clients that
monitors different rooms and continuously sends information about the rooms
they monitor. The items are moved from one location to the next every n-
milliseconds. To get the total translation time, we add up all the translation
times for moving from the first room to the next and vice versa for all clients.
We then get the average translation time by doing this experiment 5 times. We
increase the number of clients as we did this experiment. We did this for 1, 2, 4,
8, 12 and 16 clients. We did the same experiments to test whether the variety
of clients has some effect on how CIM translates data. However, we also varied

322 F.T. Balagtas and C.A.M. Festin

the types of clients connected to the CIM server and the number of clients per
variation. In Figure 6 we can see in the graphs, as the number of clients increases
from 1, 2, 4, 8, 12 to 16, the average translation time of the CIM server also
increases. The average translation time for one Context-Toolkit client is 211.5
msecs/client, while for the Aura client we have 208.63 msecs/client. The average
translation time of the Context-toolkit clients is higher as compared to the Aura
clients. This means that it takes longer time to translate the data given by the
Context-toolkit clients. This is due to the fact that the data of the Context-
toolkit client is more complicated as shown in section 2.2 as compared to the
data of the Aura clients.

Fig. 6. Comparing Average Translation Time of both Context-toolkit and Aura Clients

Translation Time vs. Variety of Clients. The graph shown in Figure 7 shows the
average translation time based on the variation of clients that the CIM server
has to deal with. Based on the graph, we observed that for the experiments that
has the same types of clients that CIM deals with, the Aura group of clients
has a lower translation time as compared to the Context-toolkit group of clients.
Comparing the results in which CIM has both a Context-toolkit and an Aura
client, the translation time is higher when there are more Context-toolkit clients
connected. We can see here that the variation of clients does not really affect
the translation time of CIM, however, it is greatly affected by the type of clients
that it has to deal with.

Scalability and Extensibility. The scalability of the CIM architecture is measured
in terms of the number of clients that the CIM server can accommodate. To test
the scalability of CIM, we have tried running 1, 2, 4, 8 and 16 clients connected
to CIM and measured CIM’s translation time given the number of clients. Please
refer to Figure 8 to see the average translation time of clients. As we have seen
in the graph, the translation time is doubled as the number of clients double
which means that there is an increase in translation time. However, since the
increase in translation time is minimal, the performance of the CIM server is not
greatly affected. For this experiment, we only tried up to 16 clients, however,

Connecting Pervasive Frameworks Through Mediation 323

Fig. 7. Average Translation Time vs. Variety of Clients

based on our observation on the increase of translation time, the CIM server can
accommodate more, especially if the CIM server is placed in a more powerful
computer.

The extensibility of the CIM architecture was measured in terms of how it
can be extended to support other frameworks. We have written two different
applications using the Context-toolkit framework and the Aura framework which
can interoperate using the CIM framework. CIM can support other types of
clients that are implemented using the Java platform.

Fig. 8. Average translation time is doubled as the number of clients double

Summary of Experiment Results. Based on the results of our experiments we
have the following observations: (1) The data size (in bytes) of packets increases
as the number of inventory item information increases. Packets coming from
Context-toolkit clients have a bigger data size than that of Aura clients. (2)
The translation time increases as the data size of packets increases. (3) The
translation time increases as the number of clients connected to the CIM server
increases. (4) The translation time of Context-toolkit clients is higher as com-
pared to the Aura clients. This means that it takes more time to translate data
coming from a Context-toolkit client as compared to Aura clients. (5) The va-
riety of clients connected to CIM has minimal impact on the translation time
of CIM. (6) The CIM framework is scalable in terms of the number of clients it

324 F.T. Balagtas and C.A.M. Festin

deals with. (7) The CIM framework can be extended to support other types of
clients as long as they are using the Java platform.

4 Conclusion

The goal of this research is to create a Context-information Mediator which is
used to obtain information from different servers that use different frameworks,
and convert these information into data which can be understood by the other
frameworks. We have created a Context-information Mediator that serves as a
gateway between different frameworks in order for them to share information.
Even though CIM was designed to be a gateway for different frameworks, it can
still act as a server for clients of the same framework. This can serve as a server
for those clients so that they do not need to create their own servers in order to
pass information.

The CIM client interface serves as the link of a client to the CIM server which
abstracts the different protocols needed by the client in order to connect to CIM.
The CIM Server serves as the translator of different context-information that is
provided to the clients connected to it.

We applied the principles of the Internet architecture when designing the
protocols of the CIM. We used XML format for the representation of information
from the different clients. The choice for choosing XML to represent our data
is that it is already a well established standard and is mostly used by different
pervasive frameworks such as Context-toolkit, Aura and One.world frameworks.

5 Future Work

For further development of the Context-Information Mediator architecture, the
following ideas are suggested:

1. Translation at End Points and Hybrid Design. The current implementation
for the translation part of the CIM framework is by having the clients send
their own format of data to the CIM server and have the CIM server trans-
late and process the data. Another option for the implementation of the
translation part of our system is by having the end-points (clients) translate
their data into a standard format understood by the CIM server. When data
arrives at the CIM server, it does not have to do any translation. The advan-
tage for this design is having the burden of processing distributed among the
clients. However, for pervasive computing, we are not assured if the clients
have enough processing power since a client system can reside in any type
of device. Another option is to have a hybrid design in which a client can
choose if it wants to do its own processing or if wants the CIM server to do
the processing.

2. Support for other pervasive computing frameworks. Currently, the CIM
framework supports clients created using the Aura framework and the
Context-toolkit framework. CIM can be extended so that it will support
other pervasive computing frameworks as well.

Connecting Pervasive Frameworks Through Mediation 325

3. A network of CIM servers. Create several CIM servers that are connected
to each other and allow the sharing of information across different CIM
servers. This can help in distributing the processing of information for the
different clients connected to the different CIM servers. These CIM servers
can also act as data filterers wherein a client can choose not to share all of
its information to the other clients in connected to the system.

References

1. Saha, D., Mukherjee, A.: Pervasive computing: A paradigm for the 21st century.
Pervasive Computing, IEEE 36(3) (2003) 25–31

2. Sousa, J.P., Garlan, D.: The aura software architecture: an infrastructure for
ubiquitous computing. Technical Report CMU-CS-03-183, School of Computer
Science, Carnegie Mellon University (2003)

3. Sousa, J.P., Garlan, D.: Aura: An architectural framework for user mobility in
ubiquitous computing environments. In: Proceedings of 3rd IEEE/IFIP Conference
on Software Architecture, Montreal (2002). (2002)

4. D., G., D.P., S., A., S., P., S.: Project aura: toward distraction-free pervasive
computing. Pervasive Computing, IEEE 1 (2002) 22–31

5. Salber, D., Dey, A.K., Abowd, G.D.: The context toolkit: Aiding the development
of context-enabled applications. In: Proceedings of CHI’99, ACM Press (1999)
434–441

6. Grimm, R., Davis, J., Lemar, E., Macbeth, A., Swanson, S., Anderson, T., Ber-
shad, B., Borriello, G., Gribble, S., Wetherall, D.: System support for pervasive
applications. ACM Trans. Comput. Syst. 22(4) (2004) 421–486

7. Chen, G., Kotz, D.: Solar: A pervasive computing infrastructure for context-aware
mobile applications. Technical Report TR2002-421, Dept. of Computer Science,
Dartmouth College (2002)

8. Goh, C.H., Bressan, S., Madnick, S., Siegel, M.: Context interchange: new features
and formalisms for the intelligent integration of information. ACM Trans. Inf. Syst.
17(3) (1999) 270–293

9. Lui, S.M., Kwok, S.H.: Interoperability of peer-to-peer file sharing protocols. SIGe-
com Exch. 3(3) (2002) 25–33

10. Clark, D.: The design philosophy of the darpa internet protocols. In: SIGCOMM
’88: Symposium proceedings on Communications architectures and protocols, New
York, NY, USA, ACM Press (1988) 106–114

11. Lampe, M., Strassner, M., Fleisch, E.: A ubiquitous computing environment for
aircraft maintenance. In: SAC ’04: Proceedings of the 2004 ACM symposium on
Applied computing, New York, NY, USA, ACM Press (2004) 1586–1592

	Introduction
	Design and Implementation
	Inventory Application Implementation
	Context Information Mediator Implementation

	Performance Evaluation and Results
	Conclusion
	Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

