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notions of Z-ordering, stacking and layering are common-
place in most tabletop systems.     
In this paper we present a technique for users to seamless-
ly switch between interacting on the tabletop surface to 
above it. Our aim is to leverage the space above the sur-
face in combination with the regular tabletop display to 
allow more intuitive manipulation of digital content in 
3D. Our goal is to design a technique that closely resem-
bles the ways we manipulate physical objects in the real-
world; conceptually, allowing virtual objects to be ‘picked 
up’ off the tabletop surface, with the user lifting and tilt-
ing their hands, to manipulate the 3D position or orienta-
tion of the object in the virtual scene. These above the 
surface interactions complement rather than replace the 
more traditional multi-touch interactions on the tabletop.   
We chart the evolution of this work by describing two 
rear projection-vision prototypes we have built, based on 
a switchable diffuser [19] and a holographic projection 
screen [40]. In both cases it is possible to rear-project an 
image onto the surface whilst simultaneously using a rear-
mounted camera to detect the user’s fingers and hands as 
they interact on the tabletop and in the space above. We 
have present results of using two types of camera system: 
a regular camera used in conjunction with a system of 
diffuse infrared (IR) illumination which allows us to both 
estimate the height of hands and to robustly detect a sim-
ple pinch gesture; and a true depth-sensing camera which 
generates more noisy data in our setup but nonetheless 
supports even richer interactions.  
The novel combination of these technologies opens up the 
ability for the user to interact within the 3D space above 
the surface. However, a key challenge is the loss of ‘di-
rectness’ when a user moves from interacting on the sur-
face to the space above it. To alleviate this we present a 
novel shadow-based feedback metaphor, for more closely 
coupling the interactions occurring off the surface with 
the content being rendered on the screen. We discuss the 
strengths and limitations of our two tabletops systems, 
based on our own observations and initial user feedback. 
‘DEEPENING’ OUR THINKING OF 3D ON TABLETOPS 
3D carries many different connotations; from computer 
graphics through to emerging 3D display and sensor tech-
nologies. In the interactive tabletops and surfaces litera-
ture 3D also has very specific meanings, which we elabo-
rate upon in this section. 
A great deal of research on 3D interaction has been con-
ducted over the decades, from various fields such as Vir-
tual Reality (VR), Augmented Reality (AR), and tangible 
computing (for an overview see [2]). It is difficult to 
touch upon all of these systems and concepts in this pa-
per. However, Grossman and Wigdor [12] provide an 
excellent overview and taxonomy of interactive 3D in the 
context of tabletop applications.  
Perhaps one of the most important aspects in thinking 
about 3D on the tabletop is the separation of the user 

input, the display technologies used for output and the 
rendered graphics. 
User input 
Input can be thought of as the user’s physical actions in a 
defined space, which can be sensed by the system. For a 
standard tabletop this might be the display surface itself, 
where the user’s fingertips can be sensed in 2D.  
In defining the input capabilities of a system, it is often 
useful to consider the degrees-of-freedom (DOF) that can 
be sensed. For standard multi-touch screens, each finger-
tip offers 2DOF in terms of its position, plus a third ( i.e. 
yaw) if orientation of the finger can be calculated. Certain 
surface technologies [25, 30] can sense hover and pres-
sure input, which can provide further, albeit limited, 
DOFs. We refer to these types of input as constrained 3D 
(following [12]) because they only support Z-based input 
in limited ways.  
One way of extending the input space to above the table is 
to instrument the user, for example using augmented 
gloves or styluses with markers and [1, 3, 5, 6]. Cameras-
based techniques can also support less intrusive scenarios, 
where the user does not require any augmentation. For 
example, stereo or depth cameras placed above the dis-
play surface can be used to sense the 3D position of the 
hand and detect gestures. These can suffer from robust-
ness issues however, particularly when parts of the hand 
are occluded from the camera. Systems such as [19, 20, 
21, 40] improve this robustness by using special projec-
tion screens, such as switchable diffusers or holographic 
materials, to support sensing through the display using 
rear mounted cameras. These also have the added practi-
cality of being self contained, making them more appeal-
ing for real-world deployment. To date however these 
systems have not supported 3D finger or hand-based ges-
tural interaction. Again it is important to recognize the 
differences regarding fidelity of 3D input. Most ap-
proaches sense depth as an estimation of distance of an 
object (such as a user’s hand) in relation to the screen 
[23]. This gives 4DOF interaction when combined with 
regular on-surface interactions, allowing for Z-based 
input. To determine pitch and roll to support true 6DOF 
input more elaborate computer vision or sensing tech-
niques are required. 
Display technologies 
For most tabletops the display used for rendering digital 
content to the user is a 2D planar device such as an LCD 
or projection screen. In past tabletop research, stereoscop-
ic displays with shutter glasses [1, 6], or AR and VR 
head-mounted displays [26] have been used to generate 
3D output. These techniques require the user to be in-
strumented.  
Emerging display technologies allow for uninstrumented 
3D output. One category is auto-stereoscopic displays 
[27, 31], which can project stereo image pairs into each  
of the user’s eyes directly, without the need to wear shut-
ter glasses. These displays tend to be single-user and 



 

 

viewpoint dependent, making their use for tabletops less 
appealing. Volumetric displays [9] do not have this limi-
tation – because they render ‘voxels’ (volumetric pixels) 
in a 3D physical volume they can be used simultaneously 
by different users with different viewpoints. However, 
whilst they support some forms of 3D interaction [11, 13], 
it is not possible for users to place fingers or hands inside 
the rendered volume for direct manipulation.  
Other display possibilities include projection of 2D im-
agery onto the surfaces of physical objects that are placed 
on the surface or held above it [19, 20, 21], a term re-
ferred to as constrained 3D [12] or tabletop spatially 
augmented reality [29]. Both front- [17, 36, 37] and rear-
projection tabletops [19, 20, 21] have been demonstrated 
with these possibilities.  
The graphics 
The graphics rendered on the display are typically 2D, 
which is perhaps not surprising given typical sensing and 
display technologies. However, many 2D GUIs have 
some notions of constrained 3D through the Z-ordering 
they use to layer 2D widgets. 3D graphics are becoming 
ever more popular for tabletops, particularly in the con-
text of gaming, 3D art and modeling and CAD [2].       
For 3D graphics, one important factor for the user is the 
perceived display space. In [12] this is defined as ‘the 
possible spatial locations for which displayed imagery 
can exist based on stereoscopic depth cues’. However, 
even for a standard 2D display rendering 3D content this 
notion of perceived display space is an important one. For 
example, depending on the virtual camera position, graph-
ical projection and other depth imagery, it is possible to 
create the perception of a 3D volume inside the tabletop.  
3D tabletop interaction techniques 
In this section we give an overview of the existing work 
exploring 3D on tabletops, and attempt to categorize them 
based on the definitions introduced previously. We first 
introduce two further concepts that allow us to reason 
more deeply about these systems: 
• Input and output coupling: This defines the extent to 

which the input and output are spatially coupled. For 
regular multi-touch tabletops [8, 14, 25, 30, 38] there 
is a tight coupling between input and output spaces.    

• Input mapping: This defines how naturally the sensed 
input maps onto manipulations with the 3D graphics. 
This is an important consideration, particularly when 
fidelity of output and input differs. 

Perhaps the highest fidelity of 3D tabletop interaction 
comes in the form of stereoscopic systems, such as [1, 6] 
which combine 3D input via augmented gloves and sty-
luses, 3D displays and 3D graphics. Here there is a 
straightforward mapping and coupling between the ele-
ments. However this comes at a cost in that the user must 
be instrumented. As [12] mentions ‘such devices can be 
uncomfortable, reduce the ubiquity of the system (as they 
will no longer be walk-up-and-use), and can cause the 

user to lose the context of their surrounding environment 
or collaborators.’ Crucially these systems as well as AR 
and VR-based tabletops move away from the notion of 
interacting naturally with the tabletop. Based on these 
issues we specifically desire to explore uninstrumented 
3D interactions with tabletops.  
Hancock et al. demonstrate a set of one-, two- and three-
fingered touch techniques to manipulate 3D objects in an 
uninstrumented manner. They use a regular multi-touch 
tabletop with 2D input and display, but render 3D graph-
ics. A major contribution of the work is the mapping of 
2D input to manipulations on the 3D graphics. Given the 
differences in fidelity of input and output, symbolic inte-
ractions are defined to map from 2D translations on the 
surface to 5 and 6DOF manipulations of the 3D graphical 
content. Although the results of a study showed that these 
gestures could be readily learnt, they cannot be consi-
dered natural, in that they do not directly resemble the 
ways we manipulate objects in the real-world.  
Davidson and Han [7] present a pressure-based technique 
for manipulating the Z-order of objects on a large interac-
tive surface. A regular 2D display is used, but the sensing 
and graphics can be considered as constrained 3D. The 
pressure data provides an additional DOF to give the user 
a more natural mapping for pushing objects above or 
below one another. 
Subramanian et al. [33] define a multi-layer interaction 
technique using a 3D tracked stylus for input above a 
tabletop with 2D output and a constrained 3D graphics. 
Here the user can maintain multiple layers of visual con-
tent and move between layers by moving their pen in the 
space above the tabletop. This system uses a single stylus 
to interact, leading to symbolic interactions for switching 
between layers. We are interested in more natural touch 
and whole hand gestures for interacting both on and 
above the tabletop surface. 
Tangible user interfaces have also explored extending 
tabletop interaction space into the physical 3D environ-
ment [10, 18]. Some use physical objects as props to in-
teract with the digital [24, 35, 36], others project virtual 
imagery onto 3D objects and surfaces either from above 
[17] or below [19, 20, 21]. Although these offer powerful 
real world metaphors, our aim is to give users a more 
direct sense of interacting with the virtual in 3D, without 
using specialized objects as interaction proxies.  
NATURAL INTERACTIONS BEYOND THE SURFACE 
The motivation of this paper is to explore a more natural 
way of supporting 3D interactions on a tabletop, which 
more closely resembles our manipulations in the real-
world. Much of this motivation comes from our prior 
work [41] which explored the use of physics engines to 
bring real-world  dynamics to interactions with standard 
2D digital tabletops. We achieved this through a novel 
mapping between the sensed surface input and the ren-
dered 3D graphics. The sensed 2D input was projected 
into the 3D scene as a series of rigid bodies that interacted 
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broken hand shadow on the surface they assumed correct-
ly that the gesture would not work.  
It is also interesting to note that our shadows are inverted 
in that they become smaller the further away the hand is 
from the screen. Users seem less aware of this aspect, and 
have commented that it might actually feel unusual to 
have the hand shadow get larger as it moves away from 
the surface. In some senses, the further the hand gets from 
the device the less the feedback should be portrayed on 
the screen. Of course, this is just a hypothesis that we 
hope to evaluate in the future.   
Once users have become familiar with the system, we 
have found they can readily switch between on surface 
and in-air interactions. Interestingly we have often ob-
served users just using in-air interactions even for 2D 
movement of virtual objects. We feel however that on 
surface interactions will be useful during very fine-
grained 2D multi-touch interactions, or during longer 
terms uses where interacting solely in-air could lead to 
arm fatigue. 
We also observed that users did not necessarily think 
pinching is the most intuitive gesture. For example, grab-
bing gestures where all fingers of one hand are used to 
grip the object from its sides were observed more fre-
quently. These gestures are not sensed by our system. 
Some users tried to perform a pinching gesture but in the 
wrong orientation such that the system could not observe 
an apparent ‘hole’.  
Some users had problems in judging how high objects 
were away from the surface. Enabling the object to fade 
as it moved off the ground plane improved the users’ 
depth cues. However, once fully transparent, users had 
difficulties controlling the object’s height when only the 
shadow was rendered. Finally, users often asked for addi-
tional degrees of freedom in the 3D manipulation. In 
particular carrying out 3D orientation such as tilting ob-
jects or reorienting more complex shapes (such as the 
cup) when these had become knocked over – this is some-
thing that is difficult to achieve just with 4DOF.  
EXPLORING A NEW 3D TABLETOP CONFIGURATION 
To address some of these issues we have recently begun 
to explore another tabletop configuration, which aug-
ments some of the “in the air” interactions in our previous 
prototype. One of the main rationales for this work was to 
more accurately emulate grasping, rather than the iconic 
pinch gesture, and also to think about how to enable the 
other available DOFs. Early experience with this system 
shows the promise of some of these new features as well 
as fresh challenges. 
Hardware configuration 
For display, we use a DNP HoloScreen, a holographic 
diffuser mounted on an acrylic carrier, in combination 
with a NEC WT610 short throw projector. As in [40] the 
HoloScreen material was chosen because it is nearly 
transparent to IR light, while the projector was chosen to 
meet the projection angle requirement of the HoloScreen 

material. Our HoloScreen measures 40” diagonal (com-
pared to 20” for SecondLight). 
We use a 3DV ZSense depth camera to image objects 
above the table. The ZSense is placed behind the Holo-
Screen, in a vertical configuration. For the holographic 
nature of the HoloScreen not to interfere with the opera-
tion of the ZSense, the camera must be placed off axis to 
prevent any IR illumination reflecting directly back from 
the underside of the acrylic. Like SecondLight, the com-
bination of camera, display material and projector results 
in a completely self-contained waist-high table, illustrated 
in Figure 9. 

       
Figure 9: Tabletop hardware configuration 

From range-sensing to world coordinates 
The 3DV ZSense camera uses pulsed infrared laser light 
and a very fast solid-state shutter to construct a per-pixel 
depth map of the scene (320x240, 30Hz). One of the main 
features of the camera is the ability to compute the world 
coordinates of any point within its configurable near and 
far clipping planes ܦ௡௘௔௥ and ܦ௙௔௥. An 8-bit value ݀ at 
depth map location ሺݔ,  ሻ may be converted to depth inݕ
real units (cm):  

ܦ ൌ ௡௘௔௥ܦ  ൅ 
255 െ ݀

255 ൫ܦ௙௔௥ െ ܦ௡௘௔௥൯. 

Consider the vector ܸ originating at the center of the 
camera and passing through ሺݔ, ,ݕ ݂ሻ, with focal length ݂, 
-in cm (the pixel width is known). World coordi ݕ and ݔ
nate ሺܺ, ܻ, ܼሻ is then ܦ units along ܸ: ሺܺ, ܻ, ܼሻ ൌ ܦ  · ௏

ԡ௏ԡ
 

(see Figure 10). 

     
Figure 10: Left: Raw ZSense depth image. Right: 

conversion to world coordinates. 

More correct hand shadows 
Our SecondLight-based prototype creates hand shadow 
effects by attenuating the light falling on the scene on a 
per-pixel basis according to the observed image of hands 
above the table. This approximation of shadows has lim-
its: for example, a hand will shadow objects that are 
known to be above it. As we explore more realistic grasp-
ing models, such limitations may be troublesome. 



 

 

Our second prototype improves the simulation of shadows 
by constructing a mesh from world coordinate values 
computed as above. This mesh is rendered when compu-
ting the shadow map, but is not rendered with the sha-
dowed scene. An example is shown in Figure 11. 

  
Figure 11: 3D meshes and shadows. Left: illustra-
tion of computed world coordinate mesh used in 
shadowing algorithm. Right: table top view shows 
left hand fully above the blocks, right hand pene-
trating green block. 

Grasping model 
The pinch detection technique has important advantages 
described earlier, but as a gross simplification of human 
grasping behavior it can be a poor model, particularly 
when the user is unaware of its restrictions. With our 
second prototype we are exploring a more accurate model 
of grasping behavior that, rather than raycasting the center 
of holes formed by pinching, determines when the user 
touches an object in multiple places. Touching an object 
is determined by hit testing the geometry of each object 
with the world coordinates of the user’s fingertips. 
While it is tempting to perform all calculations (e.g., find-
ing fingertips) in world coordinates, it is important to note 
that depth estimates are noisier than the (x, y) location of 
an object that appears against a far background (such as a 
hand above the table). This is in part due to the ZSense’s 
approach of computing independent depth estimates for 
each pixel location. For this reason, it is often better to 
precisely locate the depth discontinuity due to the edges 
of such an object using traditional image processing tech-
niques on the 8-bit depth map, followed by area averaging 
of depth values and finally conversion to world coordi-
nates. 
Accordingly, we detect fingertips by analyzing the depth 
map only. While there are many ways to perform such 
shape detection (e.g., [23]) we proceed by finding the 
contour of every connected component in the binarized 
version of the depth map [4]. Each external contour is 
then walked twice: first to compute a Hough transform 
histogram to select circular shapes of typical finger ra-
dius, and second to locate the points on the contour cor-
responding to the maxima of the histogram. Multiple such 
maxima are eliminated via a standard nonmaximal sup-
pression technique, where maxima are considered over-
lapping if they lie within some arclength distance along 
the contour (see Figure 11).The depth value of each re-
maining fingertip location is computed by sampling a 
neighborhood in the depth map. This is then converted to 

world coordinates, tracked from frame to frame and 
smoothed by a Kalman filter. 

   
Figure 12: Left: Contour detection (green) and fin-
ger tracking. Right: grasping with fingertips. 

A user’s attempt to grasp an object is detected by first 
determining which fingertips (if any) are contained within 
the 3D shape of each dynamic body in the scene. If a 
body not previously under grasping control is found to 
contain exactly two fingertips, it enters grasping control. 
Thenceforth, the body remains under grasping control if 
the same fingertips are contained with the body, regard-
less of the number of fingers in the body. The body is 
dropped when either of the original fingertips leaves the 
body, as when, for example, the user opens their grasp 
(see Figure 12, right). 
This grasping model does not consider where each finger-
tip touches or penetrates the body as it would if it were a 
true simulation of grasping behavior. However, it im-
proves upon the pinch detection and raycasting approach 
by respecting the geometry of the grasped body while 
using a similar gesture, and by performing 3D picking. 
With this model, it is possible to grasp an object that is 
sitting under another object. 
Five degree of freedom manipulation 
Once under grasping control, the body may be manipu-
lated in 3D by analyzing the combined motion of the two 
grasping fingertips. Translation in three dimensions, yaw 
about Z and roll about the wrist are easily computed from 
the motion of two points. Pitch cannot be computed in 
this way, but rather via a least-squares fit to a plane of 
number of pixels in the neighborhood of the grasp.  
While the contour-based detection of fingertips allows 
easy determination of whether two fingertips are on the 
same hand, bimanual manipulations may be performed 
when the two fingertips are on different hands. 
More fidelity requires more control 
The more detailed modeling of shadows, grasping and 
manipulations suggests a higher fidelity interaction than 
possible with our first prototype. Indeed, a number of 
interactions are possible that were not before: precisely 
orienting an object and grasping an object at a given 
height are two examples. 
However, the very same improvements in fidelity demand 
that the user be more aware of the 3D position of their 
grasp and the objects they are attempting to manipulate. 
Initial early experience with this tabletop system suggests 
that the rendered shadows are extremely important, per-
haps more so than in the earlier prototype. The more ac-



 

 

curate modeling of shadows may be helpful in certain 
situations. 
Errors in finger tracking can make objects harder to grasp 
or cause objects to fall from grasp. In particular, when the 
grasped object is small or the grasp is too tight, the finger-
tip contours will merge and disappear. To combat this 
effect we have experimented with increasing the effective 
size of the object for hit testing. Another option is to fall 
back to the pinch gesture in this case (it is easily identi-
fied as an internal contour). Perhaps rather than rely on 
fragile finger tracking, an approach based on contour or 
mesh tracking is feasible. Ultimately we would like to 
more closely simulate the physics of grasping, after the 
style of [41]. 
Grasping in 3D also depends on the user’s ability to see 
more than the tops of objects. This in turn depends on the 
choice of graphics projection transformation. A standard 
perspective transformation allows the sides of an object to 
appear if it is not near the center of the table. Moving the 
camera to one side addresses this limitation, but makes it 
impossible for the simulated table and the physical table 
surface to coincide. We suggest an “off-center” perspec-
tive projection (also known as “perspective control lens” 
in photography) to restore this correspondence, so that 
objects on the table plane will appear at the correct loca-
tion on the physical table, while objects with height exhi-
bit perspective effects. 
COMPARISON OF OUR 3D TABLETOPS 
Perhaps the most obvious difference between the two 
systems presented in this paper is the input fidelity af-
forded by each. The SecondLight setup can only approx-
imate the distance of objects above the surface, and it 
only provides 4DOF input which was one of the main 
limitations according to user feedback. Our second proto-
type, and in particular the ZSense camera, provides higher 
DOFs and enables exciting new interaction techniques 
that we have only just begun to explore.  
However, the added sensing flexibility of the system 
comes at a cost – foremost speed and robustness. The 
ZSense camera provides calibrated depth data but only at 
30Hz and a lower resolution. The image provided by the 
two tabletops also differs significantly in terms of noise. 
The ZSense depth image requires extensive smoothing 
and processing further reducing the tracking frame rate. 
So there is a clear trade-off between system responsive-
ness and input fidelity. These differences in sensing fi-
delity also impact the interaction style. In SecondLight, 
ray-casting into the scene upon detecting a pinch gesture 
always picks the topmost object. The more accurate depth 
data in our new tabletop allows for more precise 3D ma-
nipulation, such as grasping of objects that are positioned 
underneath other virtual objects. It also allows for more 
correct shadows to be rendered into the scene. However, 
the noise also leads to more artifacts appearing in the 
rendered shadows, which may in fact lead to adverse 
effects.    

The SecondLight platform has some compelling qualities 
absent from our new tabletop. In particular the lighter 
weight approach to sensing, leads to a greater speed of 
interaction, which adds much to the user experience. The 
on-surface image is also much higher quality in terms of 
viewing angle, than it is with the holoscreen. Finally, the 
switchable diffuser allows projection through the surface. 
Whilst we haven’t explored this in our current work, pro-
jecting onto the user’s hands to provide coarse feedback 
about objects under manipulation is an interesting avenue 
of exploration. 
CONCLUSIONS 
We have implemented and demonstrated two prototype 
systems, motivated by a desire to use the space above an 
interactive tabletop to enable richer depth-based interac-
tions, without compromising an integrated hardware form 
factor. Our second system was developed to address some 
of the shortcomings of the first, which were uncovered by 
observing hundreds of users interacting with it. However, 
it turns out that both systems have their own strengths and 
weaknesses and we therefore thought it valuable to 
present both setups in some detail in this paper. 
This work builds on the existing literature through a num-
ber of distinct contributions: 
• We present a number of extensions to SecondLight to 

support sensing up to ½m beyond the tabletop.  
• We have developed a novel shadow-based technique 

to provide feedback during mid-air interactions. 
• We have built a tabletop system based on a depth 

camera and holoscreen. 
• We have implemented a tabletop system with high 

DOF 3D interactions without requiring any user in-
strumentation, whilst also supporting on surface inte-
ractions 

Currently our work builds on a physics-based UI to em-
phasize the naturalness of the interaction afforded. How-
ever, we feel that the techniques described here can be 
generalized to other 3D systems and even to 2D tabletop 
UIs with notions of Z-ordering and layering.     
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