
HoverFlow: Expanding the Design Space
of Around-Device Interaction

Sven Kratz
Deutsche Telekom Laboratories

TU Berlin, Germany
+49 30 8353 58289

sven.kratz@telekom.de

Michael Rohs
Deutsche Telekom Laboratories

TU Berlin, Germany
+49 30 8353 58469

michael.rohs@telekom.de

ABSTRACT
In this paper we explore the design space of around-device
interaction (ADI). This approach seeks to expand the
interaction possibilities of mobile and wearable devices beyond
the confines of the physical device itself to include the space
around it. This enables rich 3D input, comprising coarse
movement-based gestures, as well as static position-based
gestures. ADI can help to solve occlusion problems and scales
down to very small devices. We present a novel around-device
interaction interface that allows mobile devices to track coarse
hand gestures performed above the device’s screen. Our
prototype uses infrared proximity sensors to track hand and
finger positions in the device’s proximity. We present an
algorithm for detecting hand gestures and provide a rough
overview of the design space of ADI-based interfaces.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User
Interfaces—input devices and strategies, interaction styles.

General Terms
Design, Human Factors.

Keywords
Around-device interaction, gestures, mobile devices, wearable
devices, proximity sensors.

1. INTRODUCTION
Around-device interaction (ADI) is an emerging research topic
in the field of mobile device interaction [4]. Using sensors, the
interaction space of small mobile devices can be extended
beyond the physical boundary of mobile devices to include the
full 3D space around them. Around-device interaction has the
potential to be a beneficial addition to standard interface
elements of mobile devices, such as keypads or touch screens.
This is particularly attractive for very small devices, such as

Figure 1. Interacting with very small devices via coarse

gestures. The gestures are detected by an array of
proximity sensors extending in radial direction from the

device.
wrist watches, wireless headsets, and future types of wearable
devices such as digital jewelry (Figure 1). In these kinds of
devices, it is extremely difficult or even impossible to operate
small buttons and touch screens. The space beyond the device,
however, can easily be used, no matter how small the device
may be. Such wearable devices can also serve as easily
accessible controllers for appliances in the environment or for
wireless communication applications. In a smart home
environment, for example, a gesture on the device could dim
the light or control the volume of entertainment system.

In mobile use scenarios, an incoming call could casually be
forwarded to the voice mailbox or an incoming message could
be acknowledged using different gestures. For mobile phones
or PDAs - whether handheld, placed on a table, or placed in a
cradle in the car - ADI could open up a range of 3D interaction
possibilities. Coarse movement-based gestures could control
PDA applications, such as turning pages in an electronic book.
In a calendar application moving to the next day or month
could be controlled by specific gestures, such as sweeping with
the palm or with the edge of the hand, respectively (Figure 3).
Such coarse gestures do not require the activation of a user
interface widget and can be executed without visual feedback.
This is especially beneficial for devices for which command
selection via visual feedback is difficult, because the device is
not in the line of sight, such as digital jewelry or wireless
headsets. More fine-grained gestures could have a natural
spatial mapping to 3D objects on the screen. Moving the hand
closer to the device or rotating the hand could be mapped to
zooming along the z-axis or rotating 3D objects. In order to
mitigate occlusion, such gestures do not necessarily have to be
performed on top of the device display. If infrared proximity
sensors are used, they can be oriented in such a way, that the

Copyright is held by the author/owner(s).
MobileHCI'09, September 15 - 18, 2009, Bonn, Germany.
ACM 978-1-60558-281-8.

interaction does not occlude visibility of application objects on
the screen.

Figure 2. The current set-up of our prototype. Six Sharp
GP2D120X IR distance sensors are placed along the long
edges of an iPhone mobile device running the HoverFlow
application (described in Section 3). Using simple hand
gestures, the user can scroll and select colors in the color
palette.
In light of this multitude of application possibilities, we think
that it is worthwhile to explore the design space of around-
device interaction in more detail. In this work, we present a
first interface for coarse hand-gesture recognition above mobile
devices. We describe the gesture recognition algorithm as well
as our hardware prototype. We show a number of movement-
based gestures that are suitable for recognition by proximity
sensors. Furthermore, we will present a brief characterization of
the design space of around-device interaction and identify
promising research directions.

2. RELATED WORK
The Gesture Pendant, presented by Starner et. al. [21], was a
neck-worn device that could recognize hand gestures performed
by the user in front of its built-in camera. The advantage of
using IR distance sensors, as in our setup, over the use of a
camera for hand-gesture recognition is not only the low
material cost of the distance sensors compared to a camera, but
also ability of our setup to support continuous input using
distance data provided by the IR distance sensors. Moreover,
getting useful information from distance sensors is
algorithmically much simpler than implementing computer
vision techniques.

Hinckley et. al. adopted the idea of placing an infrared (IR)
distance sensor on a mobile device and investigated technical
characteristics of this kind of sensor technology [7]. The
infrared distance sensor allowed the device to detect the
presence of the user. This idea is used today in a number of
digital single-lens reflex (DSLR) cameras that switch off the
LCD display on the back when the user looks through the
viewfinder.

SideSight [4] is an instance of an around-device interface by
locating a series of IR sensors on the long edges of a small
mobile device. This technique allows capturing simple multi-

touch gestures around the device’s perimeter. SideSight focuses
on minimizing occlusion problems and is designed for
operation while the device is placed on flat surfaces. In
SideSight, the field of the distance sensors extends across the

Figure 3. An overview of the hand gestures currently
recognized by our prototype.
display surface to the left and right of the device. In our
prototype the sensors are oriented towards the user to allow for
handheld interaction (one hand is holding the device, the other
hand performs the gesture). In more flexible setups, the
distance sensors should be oriented in multiple directions to
cover the whole space around the device.

Baudisch and Chu [2] focus on adding pointing input
capabilities to very small devices. In order to avoid occlusion
they use a touch screen on the back of the device and show that
this approach is successful even for display sizes below 1".
Since interaction with the nanoTouch device [2] means
touching the back of the device, the possible physical extent of
input movements is still given by the size of the device. In
contrast, around-device interactions are independent of the
physical size of the device and can be performed without visual
feedback on devices without a touch screen.

FreeDigiter [13] is a proximity-sensing mobile phone headset
that allows for the entry of digits via finger gestures. It uses a
single infrared proximity sensor and is thus limited to very
simple gestures involving counting 1-4 fingers crossing the

field of the proximity sensor. The system uses an explicit
clutching gesture, which is implemented with a dual-axis
accelerometer. To begin gesture recognition the user has to

Figure 4. Image maps of the six IR distance sensor readings
against time. The bright areas signify the proximity of an
object. Notice the staggering of the peaks in the sample
data, which is one of the distinctive features by which the
gestures can be identified.
briskly nod his head to the right. Another nod turns the
recognition system off again.

LightGlove [9] is a wrist-mounted input device that senses
reflections from IR light beams when the fingers are bent. As
an alternative to optical sensing, electric field sensing has been
applied for a long time for touch detection and sensing hand
position in space.

The Theremin [22], for example, was one of the earliest music
instruments that used electronic field sensing of hand positions
in space. Electronic music instruments have since also been
implemented with IR proximity sensing [6]. Smith et al. [19]
apply low frequency electric fields to implement a number of
applications in stationary settings. The approach can be
unreliable and susceptible to noise and it is not clear whether it
is suitable for mobile use cases.

ThinSight [8,10] is a thin form-factor multitouch display that
can detect fingers and objects touching an LCD screen.
ThinSight uses a 2D grid of IR optosensors that are located
directly behind a modified LCD panel. The system is primarily
designed for (multi-)touch interaction and cannot detect hand

gestures at a distance beyond 10 mm. However, the technology
is suitable for detecting IR light sources even at larger distances
from the surface and in principle supports bi-directional data
transfer via IR as well.

3. HOVERFLOW
HoverFlow is an example application for the Apple iPhone that
demonstrates the use of a sensor-based interface for detecting
coarse hand-gestures above small mobile devices. The
implementation of our application is partially based upon the
CoverFlow Example by Sadun [14]. HoverFlow allows the user
to select colors from a color palette through hand. Possible
gestures are moving the hand across the device, presenting a
number of hand postures, or by moving a hand rapidly towards
or away from the device. Figure 3 shows an overview of all
gestures currently implemented in our system.

3.1 Supported Gestures
The CoverFlow View provided by the iPhone’s iPod application
inspired the visual layout of HoverFlow. Thus, we decided to
map the user’s movements in the following way: if her hand
moves across the device from left to right (Figure 3A), the
color palette scrolls from left to right, and vice-versa (Figure
3B). A hand-edge movement from left to right (Figure 3C)
makes the color palette scroll 5 colors to the right and vice-
versa (Figure 3D). A color is selected when the user moves her
hand swiftly towards the device (Figure 3G). A color is
deselected when the user moves her hand rapidly away from
the device. Rotating the hand towards the left (Figure 3E) or
right (Figure 3F) permits the user to scroll directly to the
beginning or end of the palette, respectively.

3.2 Interface Implementation
3.2.1 Sensing
To capture simple hand movements and gestures, our prototype
system uses six Sharp GP2D120X IR [17] distance sensors,
placed around the device’s edges and facing vertically away
from the device. Figure 2 shows the current sensor
configuration of our prototype.

An Arduino BT [1] microcontroller board captures the distance
readings provided by the sensors. The sensors supply 256
discrete range readings allowing them to detect distant objects
from 4 to 30 cm away. The sensor update rate is 25Hz. A PC
processes the sensor data, and handles the gesture recognition.
In future versions of HoverFlow, we aim to conduct all
processing on the mobile device, by establishing a direct link
between the Arduino board and the mobile device via RS-232
or Bluetooth.

3.2.2 Gesture Detection and Recognition
To smooth the raw sensor data, it is passed through a Savitzky-
Golay filter [16] in an initial processing step. The filtered data
is then added to a queue containing the differences of the last
16 sensor readings, i.e. the difference ΔD = Dt −Dt−1 . We use
the difference values instead of the absolute values in order to
make gesture recognition independent of the distance between
the user’s hands and the device. The queue is updated every
time the Arduino provides a new sensor reading. The window
length of 16 was chosen because the sampling rate of the
distance sensors is 25 Hz, which means that the system

constantly keeps a history of the last 640 ms of interaction. This
window length provides us with enough samples do discern
user gestures in a meaningful way while at the same time
assuring a response time from the system within a acceptable
time interval (<1000 ms).

An advantage of the method we implemented is that it does not
require any clutching mechanism to detect the start and end of a
gesture, which is often required for accelerometer-based
gesture recognition. When no IR-reflective object is present in
the range of the distance sensors, they will provide a noise floor
of values close to zero. Gestures can be distinguished from
operation on the touch screen, by checking whether the screen
was touched after the distance sensors detect an object in range.
If a screen touch event occurs then this activity is interpreted as
touch input and the gesture is discarded. Otherwise the activity
is treated as a gesture. Accelerometers constantly provide
sensor data as the user moves. It is therefore much harder to
distinguish between moves that are part of a gesture and those
that are not.

To determine if a significant user movement has been detected,
the Euclidean norm of the oldest element of the readings queue
is constantly calculated. If this norm surpasses a predefined
threshold, the remaining 15 sensor readings are analyzed to
determine the end of the sequence representing user input.
Interaction with HoverFlow is designed to take place within a
certain distance range around the device, so this threshold is set
to the value the sensor array provides when a large object is
held in front of them at a distance of about 5-7 cm away from
it. Figure 4 shows image maps of several gestures supported by
our system. In each graph, time progresses from top to bottom.
The numbers on the y-axis show the sample index. 30 samples
are shown, which corresponds to a time span of 1200 ms. The
x-axis shows one column of data for each of the six sensors. As
can be seen from this visualization, states of inactivity (low-
amplitude noise) can easily be distinguished from a gesture
entry by looking for a point in time from which on the
amplitude of the signal rises significantly.

3.2.3 Gesture Classification
Once the bounds of the sequence containing user activity have
been detected, a best-matching gesture template from a set of
prerecorded user inputs is estimated using Dynamic Time
Warping (DTW). A good overview of how DTW functions can
be found in [12, 15]. Gestures and templates are represented as
16-by-6 matrices of sensor value deltas.

DTW performs well in cases where the captured sample and the
matching template are distorted in time, but have similar
values. In our case, using DTW allows the recognition of
gestures that are similar in movement to but are performed at
different speeds than the pre-recorded templates. In our
prototype, we achieved acceptable recognition rates using only
2 to 3 training samples per gesture, with a gesture vocabulary
of up to 9 gestures.

DTW-based approaches generally need less training samples
than other methods, such as Hidden Markov Models [23]. Thus
we do not require an extensive corpus of gestures to be
available in order for our prototype to function correctly. A
possible drawback of the DTW algorithm, its time and space

complexity of O(n 2) , is not an issue due to the small size of
the sampling window, which results in a maximum size of the
distortion matrix of 256 elements. (Entry (i,j) of the distortion
matrix contains the DTW-distance between samples 1 to i of
the gesture and samples 1 to j of the template. Entry (16,16)
thus

Gestur
e A B C D E F G
A 0.775 0 0.225 0 0 0 0
B 0.025 0.925 0.025 0.025 0 0 0
C 0.1 0 0.9 0 0 0 0
D 0 0.175 0.025 0.825 0 0 0
E 0 0 0 0 0.875 0 0.125
F 0 0 0 0.025 0.025 0.95 0
G 0 0 0.025 0 0.025 0.95

Figure 5. This confusion matrix shows the actual gesture
entries (row) and the predictions (columns), as the number
of the predictions for each gesture class divided by the total
number of entered gestures for that class. The average
(correct) gesture recognition rate was 88.6%. (The indices
A-G correspond to the indices in Figure 3.)

contains our measure of similarity between gesture and
template. The distortion matrix is built up from entry (1,1)
using a dynamic programming approach.) Because of the small
size of the distortion matrix, CPU and memory requirements
should not present a constraint for our algorithm if it is run on
modern mobile devices. If, however, sensors with a higher
sampling rate were to be employed, which would result in
larger data sets to be processed at a time, it may be likely that
further optimizations of the DTW algorithm, such as FastDTW
[15], will be required.

3.2.4 Update of Mobile User Interface
Once a gesture has been detected, the user interface of the
mobile device running the HoverFlow application needs to be
updated. In our prototype, the PC sends XML-RPC calls to the
mobile device to signal interface updates when new gestures
have been detected.

3.3 Evaluation of Gesture Recognition
As the initial gesture recognition performance of our prototype
was acceptable, we decided to perform a small user study to
further evaluate our interface. Firstly, we wanted to gain insight
into the impact that our choice of gesture vocabulary makes on
gesture recognition. We were especially interested in
identifying gestures possessing similar features with respect to
the gesture recognizer, i.e. leading to false positive
recognitions. Secondly, we wanted to get a basic overview of
our gesture recognizer’s recognition rate.

3.3.1 Test Layout
We invited four experienced users to take part in our
evaluation. Each user was given a brief description of our
system and of the gestures it can recognize. In an initial training
phase the users were asked to train the system with three
samples of all the gestures shown in Figure 3 except the “sweep

forward” gesture, which is a total of 7 gestures (A-G in Figure
3). After the training phase, the users were asked to enter each
gesture of the training set ten times. For each gesture entry by
the test participants, we recorded which gesture the interface
recognized.

Figure 6. A possible method of visual feedback for
interfaces using hand-gesture detection. The sensor values
are mapped to semi-transparent globes that change their
brightness according to the proximity values measured by
the sensor. In this example, the sensors on the right measure
full proximity (bright globes), whereas the user’s thumb
(bottom center) is not in full view of the sensor, leading to a
somewhat reduced measurement value of the bottom center
sensor (dim globe).

3.3.2 Test Results
In order to determine which gestures are prone to false
recognition, we determined a confusion matrix using the data
obtained from our study. The confusion matrix, as shown in
Figure 5, reveals that gestures A, C (“sweep right flat hand”,
“sweep right hand edge”) and B, D (“sweep left flat hand”,
“sweep left hand edge”) are prone to be confused by the
recognizer. The similarity of these gestures can be observed in
the example plots in Figure 4 A-D. Gestures E and F (“rotate
left / right”), however, are recognized by the system in a much
more stable way.

A possible explanation for this behavior is the relative
similarity of gestures A,C and B,D. When gestures A or B are
quickly executed, they may “look” similar to gestures C and D
to the system. This can be explained by considering the search
strategy of the DTW algorithm, which aims to compensate
feature differences in the time domain. In general, though, the
average gesture recognition rate of 88.6% was fairly good
considering only 3 samples were recorded to train the system
for each user and, more importantly, the low number of sensors
used by our prototype. If more densely spaced sensors are used,
then gestures A and B would cover more sensors at a time than
gestures

C and D, which should be easily distinguishable by the
recognizer. Of course, the study presented here is not
representative of the general user population due to the limited
number of participants and their high relative level of expertise.
In spite of this, we gain some indication of the prototype’s
performance under controlled conditions. More significantly,
the confusion matrix allows us to identify those gestures which
are likely to be falsely recognized by the system, which is
useful for the design of the gesture vocabularies of future
systems employing a similar sensor configuration and using
DTW for gesture recognition.

3.4 How to Improve HoverFlow
Several aspects of our design have the potential for
improvement, which could lead to the stable detection of even
finer hand gestures.

The current gesture recognizer could be improved to adjust for
changing conditions by using an adaptation strategy, for
example as described in [24].

As described in Section 3.1, our current prototype only allows
the mapping of the user’s hand gestures to discrete actions.
Thus the gestures detected are always “iconic” in nature.
Though this is a limitation of our current software
implementation it is not a limitation of our interface, as
continous action can be easily implemented using the distance
readings provided by the IR sensors. We intend to explore
continous, Theremin-like input in future revisions of or
prototype.

The placement of the distance sensors is very important to
correctly capture the movements of the user. If the sensors do
not cover areas that the user typically interacts with, unreliable
or even incorrect gestures may ensue. In order to increase the
fidelity of the distance measurements, more sensors could be
used, or, alternatively, distance sensors with wide-angle
coverage, such as Sharp 2Y3A001 [18] (25° coverage) could be
employed. Such wide-angle sensors have the advantage of
increasing the detection area without the cost of adding
additional hardware and wiring.

The IR distance sensors employed in our design are prone to
noisy readings. Applying adaptive filtering techniques on the
incoming data from the sensors could improve the quality of
the distance measures, and lead to better recognition results.
We aim to explore the effects of adaptive filtering on our
recognition algorithm in the near future. Moreover, the sensors
we employed have a relatively low update rate of 25 Hz. Future
HoverFlow-like interfaces would benefit greatly from distance
sensors with a higher refresh rate, as this would allow the
interface to extract gesture information with a much finer
temporal granularity.

It is very likely that Time-of-flight (TOF) depth-sensing
cameras [20] will in the future be used as an alternative to IR
distance sensors in Around-Device Interaction applications.
The realatively high (depth) resolution provided by TOF
cameras enables very fine-grained user gesture recognition [3].
At present, though, TOF cameras are still prohibitively
expensive and too large to be incorporated into mobile devices.

The HoverFlow application itself could also be improved by
adding visual feedback in order to help the user to coordinate
his hand gestures more precisely. For instance, a certain region
of the screen could be coupled to the sensor readings of a
particular sensor. This technique, which is illustrated in Figure
6, would then allow the user to verify if his movement is being
tracked around the particular region of the screen that is
highlighted. In this case, occlusion isn’t likely to be a major
problem, as the highlighted screen areas are large enough to be
seen even if partially occluded and the interaction takes place at
some distance from the screen, thus the screen contents remain
viewable (albeit at an angle) at all times.

4. AROUND-DEVICE INTERACTION
As demonstrated by the HoverFlow example application
presented in this paper, Around-Device Interaction (ADI)
shows promising potential as a complimentary interface to
existing mobile device interfaces.

ADI allows for quick and coarse interaction with the devices, in
cases where the desired actions are so simple that fine-grained
interaction with the device’s keypad or touch-screen is not
necessary.

For example, simple hand gestures may present an alternative
to clicking the back, forward or reload buttons in the device’s
web browser. Similar functionality could be implemented to
control playback of songs or movies with the device’s media
player. The detection of coarse hand gestures can also be
beneficial in cases where the user needs to deliver a very quick
input to the device, such as muting the device or answering a
call. A simple hand gesture here is presumably quicker than
getting the device’s screen into focus, locating the appropriate
button and coordinating the button press.

The occlusion problem on small device displays is at least
partially solved by ADI, as implemented in HoverFlow.
Because the user interacts with the device at a certain distance
from its screen, a gap opens up between the user’s hand and the
display, allowing the user to see the display’s contents at an
angle.

Although ADI breaks the metaphor of direct manipulation [4],
quick hand gestures may be particularly useful for tasks of an
immediate and direct nature. Also, situations where visual
interaction is not preferable, for example when driving
vehicles, may benefit from interfaces that allow the input of
simple commands using rough hand gestures. However, a
formal study of the efficiency of ADI interfaces for such and
other tasks still needs to be conducted.

4.1 The Design Space of Around-Device
Interaction
In the following, we shall characterize some of the elements of
the design space of ADI-Based interfaces. We use the term
design space in a very broad sense, including elements that we
deem to be important to the fidelity, usability and development
of ADI-based interfaces.

4.1.1 Sensors
IR distance sensors are a popular choice to sense user proximity
in mobile interfaces. The advantage of such sensors over

ultrasound range finders, for example, is that multiple IR
distance sensors working in unison show much less interference
than ultrasound sensors. On the other hand, the coverage area
of IR sensors is usually narrower than that of their ultrasound
counterparts.
Obviously, the fidelity of ADI increases with the number of
sensors. Technological miniaturization may in the future allow
for the development of very small sensors. Placed in significant
numbers on the device, such miniature sensors would allow
mobile device to gain a relatively high-resolution “image” of its
surroundings. Covering the device in printed organic distance
sensor circuitry has also been envisioned [4].
However, since energy consumption on mobile devices must be
kept at a minimum, each increase of the amount of sensors will
come with a cost. Not only do the sensors themselves consume
energy, the higher the number of sensors that are mounted on
the mobile device, the more CPU cycles will have to be
devoted to processing the influx of data from the sensors.
Sensor placement is thus an important design decision. Sensors
should be placed on locations on the device that allow them to
optimally track the features (i.e. hands) of the user that are used
for interaction with the device. As demonstrated by Butler et.
al., one possible useful placement of IR distance sensors is on
the edges of the device facing outwards. This allows the device
to track the presence of the user’s fingers when the device is
placed on a flat surface. The current paper demonstrates a set-
up using sensors facing upwards from the device allow it to
track the motion of the user’s hand using information from only
six IR distance sensors. An even more significant advantage of
HoverFlow-like interfaces is that they do not require the device
to be placed on a flat surface in order to operate correctly.
LucidTouch by Wigdor et. al. [21] demonstrated a technique
enabling a mobile device to track the presence of the user’s
fingers to the rear of the device.

4.1.2 Mapping of Sensor Data to Interface Actions
Useful mappings of the sensor information to interface
elements need to be discovered. In this work, we demonstrate
the use of IR distance sensors to recognize simple hand
gestures. In our application, the data was input into a gesture
recognizer in order to recognize simple hand gestures.
However, for other applications alternative mappings may be
more advantageous. Currently our system can only effectively
discern a single user action from sensor noise. An interesting
but difficult improvement of HoverFlow would be the
capability to identify a sequence of gestures performed in a
single user action (for instance the gestures “rotate-right”
followed by “rotate-left” and “sweep left” performed in close
succession, appearing as a single gestureal phrase to the user
[5]). A further example of a useful sensor mapping is the one
used by Butler et. al. in SideSight. They use the sensor readings
of their prototype to enable multi-touch like user inputs on the
sides of a mobile device. They map their sensor readings to a
one-dimensional bitmap, from which the finger position and
estimated distance can be inferred. In LucidTouch, the user’s
fingers are located on the rear of the device. The camera image
of the fingers is mapped to the device’s screen in the form of
finger shadows.

With a very high sensor density, the mobile device could even
obtain a 3D representation of the part user’s fingers or hands
facing the sensor area. It may become possible to identify very
detailed hand gestures, enabling interesting possibilities for 3D
manipulation of on-screen objects or for gaming, for example.

4.1.3 Feedback
Since the direct manipulation metaphor is broken due to the
interaction taking place away from the device, feedback plays
an important role for the usability of the interface, as it will
help users operate ADI interfaces more effectively.

Apart from the visual feedback mechanism proposed in Section
3.4, it may be feasible to use vibrotactile feedback (i.e. using
the mobile device’s built-in vibrator motor), if the device is
held in one hand while the other hand performs the interaction.

In a similar way, auditory feedback could provide feedback on
the status of the gesture recognition, i.e. playing back a
notification when a gesture has been recognized.

4.1.4 Expanding Existing User Interface
Frameworks
The majority of the interface frameworks of existing mobile
devices do not yet support ADI. However, as can be seen from
the recent addition of accelerometer support in UI frameworks
in Apple’s iPhone or the Nokia S60 series of mobile devices,
the palette of supported sensors is being continuously expanded
and may well support IR distance sensors in the near future.

The general advantage of integrating sensor support into mobile
interface frameworks is that this allows the actual processing of
the sensor data to be abstracted away, allowing developers to
focus on the core benefits provided by the additional sensing.
An example of such an abstraction can be found in the device
orientation frameworks on iPhone or Nokia S60 mobile
devices. The device orientation frameworks use the devices’
built-in acceleration sensor to provide device orientation
information (i.e. face-up, face-down, portrait, landscape) to the
applications running on the device. The actual sensor data is
abstracted by the orientation framework and thus not seen by
the applications using it.

Beneficial abstractions need to be included into existing mobile
UI frameworks to leverage the numerous capabilities offered by
ADI. Developing such abstractions will require careful
identification and evaluation of the most useful functionalities
that are provided by ADI.

5. SUMMARY
We presented a user interface prototype that allows mobile
devices to track coarse hand gestures using a small number of
infrared distance sensors. We implemented an example
application, HoverFlow, which allows the user to select colors
from a “flowing” palette. Hoverflow conceptually demonstrates
how interfaces that expand the interaction area of mobile
devices beyond their physical boundaries can enhance mobile
user interfaces. We classify this type of interaction as Around-
Device Interaction (ADI). We describe the implementation of
HoverFlow, a sensor-based ADI interface and present an initial
study of the system’s gesture recognition performance. The
results of this study identify those types of gestures that may
generally lead to false positive recognitions in interfaces using
configurations similar to the one used in our prototype.

We provide a rough overview of the design space of ADI-based
interfaces and highlight the areas that merit further research
activity. High-quality sensors are the most important building
block of ADI-based interfaces. The amount and the resolution
of the sensors employed directly influence the expressiveness
of ADI. The way the sensor data is mapped to the user interface
highly influences the interface’s “character” and also usefulness
for everyday operation. Additionally, Feedback mechanisms
need to be explored in order to keep the user “in the loop” and
to make ADI-based interfaces easier to use and understand by
unskilled users. For developers, toolkit integration will be an
important factor for the incorporation ADI techniques in future
mobile interfaces. Only if useful abstraction layers for the ADI
sensor information are provided by popular mobile interface
toolkits will we see ADI techniques implemented in
applications outside of the research community.

6. REFERENCES
[1] Arduino: prototyping boards and development environment,

http://www.arduino.cc .
[2] Baudisch, P. and Chu, G. 2009. Back-of-device interaction

allows creating very small touch devices. In Proc. of
CHI ‘09.

[3] Breuer, P. and Eckes, C. and Muller, S., Hand Gesture
Recognition with a Novel IR Time-of-Flight Range Camera-
A Pilot Study, Lecture Notes in Computer Science, Vol.
4418, pp. 247, Springer, 2007.

[4] Butler, A., Izadi, S., and Hodges, S. 2008. SideSight: Multi-
"touch" interaction around small devices. In Proc. of
UIST '08. ACM, 201-204.

[5] Buxton, W. A. 1995. Chunking and phrasing and the design
of human-computer dialogues. In Human-Computer
interaction: Toward the Year 2000, R. M. Baecker, J.

Grudin, W. A. Buxton, and S. Greenberg, Eds. Morgan
Kaufmann Publishers, San Francisco, CA, 494-499.

[6] Franco, I. 2004. The AirStick: A free-gesture controller
using infrared sensing. In Proc. New Interfaces For Musical
Expression (NIME), 248-249.

[7] Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. 2000.
Sensing techniques for mobile interaction. In Proc. of
UIST '00. ACM, 91-100.

[8] Hodges, S., Izadi, S., Butler, A., Rrustemi, A., and Buxton,
B. 2007. ThinSight: Versatile multi-touch sensing for thin
form-factor displays. In Proc. of UIST '07. ACM, New York,
NY, 259-268.

[9] Howard, B. and Howard, M.G.: Ubiquitous Computing
Enabled by Optical Reflectance Controller. Whitepaper.
Lightglove, Inc., http://lightglove.com/White%20Paper.htm .
(Visited on 25.06.2009).

[10] Izadi, S., Hodges, S., Butler, A., Rrustemi, A., and Buxton,
B. 2007. ThinSight: Integrated optical multi-touch sensing
through thin form-factor displays. In Proc. of the 2007
Workshop on Emerging Displays Technologies: Images and
Beyond: the Future of Displays and interacton. EDT '07, vol.
252. ACM, 6-9.

[11] Izadi,S., Butler, A., Hodges, S., West, D., Hall, M., Buxton,
B., Molloy, M. Experiences with Building a Thin Form-
factor Touch and Tangible Tabletop. Proc. of TABLETOP
2008, 193-196.

[12] Kruskall, J. & M. Liberman. The Symmetric Time Warping
Problem: From Continuous to Discrete. In Time Warps,
String Edits and Macromolecules: The Theory and Practice
of Sequence Comparison, pp. 125-161, Addison-Wesley
Publishing Co., Reading, Massachusetts, 1983.

[13] Metzger, C., Anderson, M., and Starner, T. 2004.
FreeDigiter: A Contact-Free Device for Gesture Control. In
Proc. of the Eighth international Symposium on Wearable
Computers. ISWC. IEEE Computer Society, 18-21.

[14] Sadun, E., iPhone Developer’s Cookbook, Pearson
Education, November 28, 2008, ISBN 0321555457.

[15] Salvador, S. and Chan, P., FastDTW: Toward Accurate
Dynamic Time Warping in Linear Time and Space, KDD
Workshop on Mining Temporal and Sequential Data, 70-80,
2004.

[16] Savitzky, A., Golay, M.J.E. 1964. Smoothing and
Differentiation of Data by Simplified Least Squares
Procedures. Analytical Chemistry, 36 (8), 1627-1639.

[17] Sharp GP2D120 Distance Sensor,
http://www.sharpsma.com/Page.aspx/americas/en/part/GP2D
120/

[18] Sharp 2Y2A001 wide-angle IR distance sensor, http://sharp-
world.com/products/device/lineup/data/pdf/datasheet/gp2y3a
001k_e.pdf

[19] Smith, J., White, T., Dodge, C., Paradiso, J., Gershenfeld, N.,
and Allport, D. 1998. Electric Field Sensing For Graphical
Interfaces. IEEE Comput. Graph. Appl. 18, 3 (May. 1998),
54-60.

[20] SwissRanger 4000 Time-of-Flight Camera, Mesa Imaging
AG, http://www.mesa-
imaging.ch/dlm.php?fname=pdf/SR4000_Data_Sheet_rev1.5
.pdf

[21] Starner, T. and Auxier, J. and Ashbrook, D. and Gandy, M,
The gesture pendant: A self-illuminating, wearable, infrared
computer vision system for home automation control and
medical monitoring, International Symposium on Wearable
Computing, 2000, pp. 87-94.

[22] Theremin, L.S. 1996. The Design of a Musical Instrument
Based on Cathode Relays. Reprinted in Leonardo Music J.,
No. 6, 1996, 49-50.

[23] Wigdor, D., Forlines, C., Baudisch, P., Barnwell, J., and
Shen, C. 2007. Lucid touch: A see-through mobile device. In
Proc. of UIST '07. ACM, 269-278.

[24] Zhen Wang, Lin Zhong, Jehan Wickramasuriya, and Venu
Vasudevan, uWave: Accelerometer-based personalized
gesture recognition, Technical Report, Rice University and
Motorola Labs, June 2008.

