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ABSTRACT
Touchscreens combine input and output in a single interface.While this enables an intuitive interaction

and dynamic user interfaces, the fat-finger problem and the resulting occlusions still impact the input

accuracy. Previous work presented approaches to improve the touch accuracy by involving visual

features on the top side of fingers, as well as static compensation functions. While the former is

not applicable on recent mobile devices as the top side of a finger cannot be tracked, compensation

functions do not take properties such as finger angle into account. In this work, we present a data-

driven approach to estimate the 2D touch position on commodity mutual capacitive touchscreens

which increases the touch accuracy by 23.0 % over recently implemented approaches.
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INTRODUCTION AND RELATEDWORK
Virtually all mobile phones use touchscreens as the main interface. Touchscreens combine input and

output in a single surface which brings a wide range of advantages. Not only do touchscreens enable

manufacturers to build compact and robust devices; they also enable dynamic user interfaces (UI)

based on the concept of direct touch. Similar to physical objects, users can interact with elements of

the UI by simply touching, moving, or rotating them. This enables an intuitive interaction for the user

while the full front side of a mobile device is usable for both input as well as output.

Over 10 years, smartphones exclusively use mutual capacitive touchscreens due to their responsi-

veness, durability, and support for multi-touch. On a technical basis, these touchscreens consist of

spatially separated electrodes in two layers which are arranged as rows and columns. The controller

first measures the change of coupling capacitance between two orthogonal electrodes to obtain

low-resolution finger imprints [2], and then translates the imprints into two-dimensional coordinates

which often correspond to the centroid of the contact area [6].

While the translation is kept simple, users can neither see nor feel whether they “touched” the

desired target (i.e. assess whether the 2D coordinate is within the activation area of a target) as the

finger tip occludes the area below. Indeed, Holz and Baudisch [5, 6] found that users target based on

visual features located on the top/along their fingers (e.g., nail bottom and center of finger nail) in

contrast to the contact area’s centroid which is occluded. This mismatch between the user’s mental

model and the touch device’s translation process results in error offsets of 4mm around the target.

While using the finger’s visual features to reconstruct the user’s mental model reduces the error offset

to 1.6mm, this is not applicable to recent mobile devices as the finger’s upper side is not trackable.

Improving the touch accuracy is important as precise touch input increases the user’s performance

(less corrections are required) and reduces errors (e.g., activating unintended functions). Henze et
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al. [3, 4] observed users’ touch behavior within games featuring typing and targeting tasks, and

found that the touch input is systematically skewed on average. By deriving a static compensation

function, they showed that touch offsets can be reduced by 7.8% for targeting and 9.1% for typing.

Recent on-screen keyboards such as SwiftKey follow a similar approach and monitor user-based offset

patterns to automatically compensate for touch errors based on input modeling
1
.

1
SwiftKey Typing Heatmap: https://blog.

swiftkey.com/access-swiftkey-heatmap/ A large body of previous work presented active approaches to compensate touch errors produced

by occlusions. Shift [16] displays occluded screen content in a call-out above the finger and is recently

used in most iOS devices for precise text cursor placement. A similar approach by Roudaut et al. [14]
provides a magnified popup which shows the occluded content and enables users to perform fine-

grained input. Similarly, previous work also investigated the use of offset cursors which extend the

thumb by a line [7]. Instead of performing input by touching a target, previous work [8, 15] proposed

to move the screen content below a target instead of the target itself. By using input beyond the

touchscreen, previous work also proposed input on the rear to avoid occlusions [1, 10, 12].

The presented approaches require either external tracking mechanisms to track features on the

top/along the side of the fingers, are based on static compensation functions, or require additional

actions to achieve precise touch input. We present a first step towards increasing the touch accuracy

based solely on the raw data of mutual capacitive touchscreens and deep learning. In particular, we

present a model which translate the raw capacitive data into a 2D touch coordinate with an average

error offset of 2.35mmwhich already represents an improvement of 23.0 % over recent touch controllers.

We further share our data set to enable future work to reproduce and improve our approach.

DATA COLLECTION
We conducted a study to collect capacitive images (i.e. the raw data of a capacitive touchscreen) of

touches and their ground truth position.

Tasks & Study Design
To collect capacitive images labeled with the respective touch position, we developed a target selection

task in which participants target cross hairs on the screen. Thereby, we instructed participants to aim

for the intersection within the cross hair which we consider to be the ground truth position of a touch.

Based on a previous study by Holz and Baudisch [6], we used a 2 × 4 × 4 within-subjects design
with the independent variables being the Finger (thumb and index finger), HeadPosition (right near,

right far, front, below head), and the finger’s pitch Angle (15◦, 25◦, 45◦, 60◦). We used the same

HeadPositions as Holz and Baudisch which needs to be considered due to the head parallax. The

finger’s pitch angle was considered since it affects the area of finger imprint. We randomized the

order of the conditions. Each condition consists of 25 targets.

Figure 1: Screenshot of the study applica-
tion.

https://blog.swiftkey.com/access-swiftkey-heatmap/
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Apparatus
We used an LG Nexus 5 with a modified kernel as described in previous work [9, 11, 13] to access the

15× 27 8-bit capacitive image of the Synaptics ClearPad 3350 touch sensor. An exemplary image of the

raw capacitive data is shown in Figure 2, whereas each image pixel corresponds to a 4.1mm × 4.1mm
square on the 4.95′′ touchscreen. The pixel values represent the differences in electrical capacitance (in

pF ) between the baseline measurement and the current measurement. We developed an application

which represents a target selection task to collect the ground truth position of touches. The application

is depicted in Figure 1, and shows a cross hair which represents the target to touch. All capacitive

images were logged in the background.

Participants & Procedure
We recruited 12 participants (8 male and 4 female) with an average age of 23.9 (SD = 1.4) from our

university’s volunteer pool. After we obtained informed consent, we seated participants in front of a

table on which the device was flatly placed according to the condition. We used a protractor to ensure

that participants applied the correct pitch angle prior to each condition. While stabilizers or markers

would be more accurate, previous work [6] have discussed that these distract participants and thus

distort the data. We instructed participants to touch the cross hair as accurate as possible (i.e., at the
intersection of the vertical and horizontal line). To capture a sufficient amount of capacitive images

per target, we further instructed participants to hold the finger for two seconds on the touchscreen

until the displayed progress bar is filled. After removing the finger, a new target was displayed. The

study took around 60 minutes per participant.

MODELING
We present our data set and describe two steps towards a model to improve the touch accuracy. This

includes cleaning and preparing the data set, and training convolutional neural networks (CNNs), the

state-of-the-art for image data, to estimate the intended touch position based on a capacitive image.
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Figure 2: Demonstrating the offset bet-
ween the desired touch position (i.e. cen-
ter of cross hair) and the registered touch.

Dataset & Preprocessing
In total, we collected 392,292 capacitive images during the study. We filtered empty images in which

no touches were performed, as well as erroneous images in which more than one finger was touching

the screen to avoid wrong labels. In particular, we performed a blob detection using OpenCV to

determine whether a single touch happened as expected. The blob detection omitted all blobs that

were not larger than one pixel of the image (4.1mm × 4.1mm) as these can be considered as noise of

the capacitive touchscreen. Further, we removed all images in which the difference between cross hair

and touch is larger than 300px (e.g., caused by unintended touches). In total, our data set consists
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of 345, 973 valid capacitive images which we used for model development. We split the dataset into

a training (75%) and a test set (25%). The data was split participant-wise so that data of the same

participant did not occur in both sets (i.e., we used data of 8 participants to train and 4 for testing).

Convolutional Neural Network
We implemented a CNN using Keras 2.2.4 based on the TensorFlow backend. We performed a grid

search to determine the most suitable hyperparameters. If we do not report a hyperparameter in the

following, we applied the standard value (e.g., optimizer settings) as reported in Keras’ documentation.
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Figure 3: Architecture of the convolutio-
nal neural network used for estimating
the 2D position of a touch.

Our final CNN architecture is shown in Figure 3. The input consists of capacitive images with

27× 15 pixels normalized to a range between 0 and 1 which goes through two convolution and pooling

layers as well as a flattening layer. In addition, we further provide an initial estimated touch position

represented by the centroid of the touch blob. We determined the centroid using OpenCV’s blob

detection which could be easily re-implemented on mobile devices. Our initial estimated 2D position

is added to the fully connected layer in addition the features from the convolution and pooling layers.

The output consists of 2 values (x,y) that represent the estimated 2D touch position relative to

the upper left corner of the display in px . We trained the CNN using an RMSprop optimizer with a

batch size of 64. We experimented with different learning rates and found that an initial learning

rate of .001 leads to the best performance. To prevent overfitting, we used a 0.5 dropout after each

convolution and pooling layer. While we experimented with L2 Regularization, it did not improve

the overall performance in our experiments. We initialized the network weights using the Xavier

initialization scheme. We used the root mean squared error (RMSE) as the loss function.

Our CNN achieved an average error offset of 41.23px (SD = 22.96px ) for the test set which equals

to 2.35mm (SD = 1.31mm) based on a screen resolution of 1920×1080px on a 4.95′′ display (0.0571mm
per pixel). In comparison, the controller of our test device (LG Nexus 5) achieved an average error offset

of 50.7px (SD = 24.97px ) which equals to 2.89mm (SD = 1.43mm). This results in an improvement of

23.0 % with our CNN over the standard touch controller.

DISCUSSION AND CONCLUSION
We presented a data-driven approach to improve the touch input accuracy on mutual capacitive

touchscreens. Our approach can be readily deployed on commodity touch input devices and further

considers properties of the touch which static compensation functions (e.g., [3, 4]) cannot consider. In
contrast to static compensation functions, which were shown to improve the touch accuracy by up to

9.1 %, our CNN improved the touch accuracy by 23.0 % without any additional sensors for tracking. As

our model could act as a replacement for the recent translation of touch surfaces into 2D coordinates,

we assume that it can improve the touch accuracy on current touch input devices at almost no costs.
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We presented our model, under which the error offsets drop to 2.35mm from 2.89mm, which

involves different finger postures sensed by mutual capacitive touchscreens to approximate how users

conceptualize touch input. Based on our publicly released dataset and model
2
, future work could

2
https://github.com/interactionlab/improving-

touch-accuracy evaluate our touch translation approach in a (long-term) study as well as more scenarios such as

while walking. Moreover, future work could further improve our approach using touchscreens which

provide touch images in a higher resolution (e.g., with infrared sensing such as on the SUR40). As

different users apply different targeting strategies, user-based models could be trained on the device

after a short calibration phase with the task used in our study.Acknowledgements: This work was

financially supported by the German Research

Foundation (DFG) within Cluster of Excellence

in Simulation Technology (EXC 310/2) at the

University of Stuttgart.
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