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Abstract: We present a scalable, semi-automated process for studying the usage 

of public displays. The process consists of gathering anonymous interaction and 

skeletal data of passersby during public display deployment and programmatically 

analyzing the data. We demonstrate the use of the process with the analysis of the 

Information Wall, a gesture-controlled public information display. Information 

Wall was deployed in a university campus for one year and collected an extensive 

data set of more than 100 000 passersby. The main benefits of the process include 

(1) gathering of large data sets without considerable use of resources, (2) fast, semi-

automated data analysis, and (3) applicability to studying the effects of long-term 

public display deployments. In analyzing the usage and passersby data of the 

Information Wall in our validation study, the main findings uncovered using the 

method were (i) most users were first-time users exploring the system, and not 

many returned to use the system again, and (ii) many users were accompanied by 

passive users who observed interaction from further away, which could suggest a 

case of multi-user interaction blindness. In the past, logged data has mainly been 

used as a supporting method for in situ observations and interviews, and its use has 

required a considerable amount of manual work. In this article, we argue that 

logged data analysis can be automated to complement other methods, particularly 

in the evaluation of long-term deployments. 
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INTRODUCTION 

Evaluating public displays and their users in a real-world setting is challenging. Evaluations 

often rely in mixed-method approaches, combining observations, interviews, and interaction 

logs [3]. This requires significant resources in time and personnel, which calls for the 

development of analysis methods that can automate some or all of the manual steps. 
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As is noted in past research, interaction with public displays is a multi-faceted process and 

can be considered to have begun even before the user directly interacts with the display [12]. 

This is especially true in the case of gesture-controlled interfaces, where detection of a passerby 

can be utilized to trigger visual interaction cues to entice use. Hence, being able to analyze not 

only users but also other passersby can give important insights into the design of public display 

applications, and cannot be achieved by traditional interaction logs. Field observations, on the 

other hand, while usually effective and often the preferred method in in-the-wild studies, are 

time-consuming and limited by human capabilities in terms of how much, and what kind of, 

data can be meaningfully gathered. 

To supplement the currently prevailing research methods, we present a semi-automated 

process for evaluating public displays both extensively and without significant use of resources. 

Our method consists of automated gathering of a large set of interaction and skeletal data of 

passersby during the deployment of a public display and the subsequent computational analysis 

of the data. In this article, we investigate the benefits and limitations of the proposed approach. 

Our starting point was to investigate whether we could programmatically analyze the collected 

data to reach findings that we would have likely identified if we had been on-site observing 

users the whole time. At the same time, we envisioned that the semi-automatic analysis can 

help capture results not achievable with human observers alone, when cognitive limitations and 

time constraints are eliminated. 

Logged skeletal motion data has been collected for analysis purposes in past research 

[1;16;28], however it has not been used to its full extent. Primarily, such data has acted as 

supporting evidence for other methods such as observations and interviews, and has involved 

a considerable amount of work in the form of manually going through the recorded depth sensor 

data. For clarification, in this article, skeletal data refers to simple, anonymous location data 

of skeletal joints tracked in 3D space, e.g., shoulders, elbows, and hands of passersby. 

To investigate the semi-automated approach, we used it to analyze the long-term 

deployment of a gesture-controlled public display application, the Information Wall [11] 

(Figure 1). We deployed the Information Wall in a large indoor space at a university campus 

for one year, during which we recorded all interaction data from the system as well as skeletal 

data from the Microsoft Kinect sensor used to control the display. The resulting large data set 

contained traces of more than 100,000 passersby. Using the semi-automated process, we were 

able to produce many meaningful results. For instance, we found that many users interacting 

with the system were accompanied by non-interacting people. With this large data set, we also 

show that the process scales well with large-scale public deployments. 
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Figure 1. Two users interacting with the Information Wall at the public deployment 

setting. 

 

In this article, we discuss the possibilities, benefits and challenges of utilizing interaction 

and skeletal data in semi-automated usage analysis. The proposed approach has several benefits 

to other data collection approaches, and can be considered an ecologically valid method for 

evaluating public displays. We also discuss the relationship between our approach and 

conducting field observations, and how the two evaluation methods can support each other. We 

demonstrate the semi-automated process in practice with the Information Wall deployment.  

The remainder of this paper is organized as follows: first, we present related work in which 

we focus on how past research has gathered data and evaluated public displays. Then, we 

present the Information Wall prototype in detail as well as the long-term deployment setting. 

Next, we present the four phases of the semi-automated process and discuss each of them: data 

collection, preparation, feature extraction, and analysis. Following, we present the results of 

applying the semi-automated process to the Information Wall deployment data to provide an 

example of the type of insights that can be acquired. Finally, we discuss the characteristics, 

benefits, and challenges of the semi-automated approach, and conclude with a discussion of 

future work. 

RELATED WORK 

In this section, we present existing work relevant to this study. First, we show the need for 

improved and less time-consuming research methods for large display evaluations. Then, we 

discuss frameworks and different phases of interaction with large displays that we utilize when 

analyzing the data from our long-term large display deployment.  
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Approaches to Evaluating Users and Public Displays 

Müller et al. [15] note that the majority of public display evaluations are descriptive field 

studies, and recognize five categories of metrics that are commonly used in quantitative 

evaluations of public displays: (1) absolute number of users is used e.g. to determine the 

number of interactions or views towards a display; (2) percentage of users out of the total 

number of users showing a certain behavior; (3) absolute number of interactions e.g. to 

determine how often an application was started; (4) duration of interactions to determine how 

long the interaction in general or a specific type of interaction lasted; (5) number of 

simultaneous users is used to round up the description of usage. 

Williamson and Williamson presented the open source Pedestrian Tracker tool [29], which 

utilizes a camera to track passersby using motion detection and background subtraction. The 

tool can be used, e.g., to recognize directions from which pedestrians approach the display the 

most and how passersby adjust their route when a public display is installed in a space. The 

tool’s strength is that it is separate from the public display installation and can thus be deployed 

in spaces from which a large area can be seen and analyzed, e.g. high above the public display. 

However, passerby movement is only one of the features we aim to include in our approach, 

and recognizing features such as gestures of a particular user with the same tool is difficult or 

even impossible by utilizing a camera that is set in a location with a good view of a large area. 

Some past studies have gathered extensive log data via a motion detection sensor in 

gestural or proxemic interfaces. Most studies have combined the approach with methods such 

as observations and interviews, and only performed lightweight, manual analysis of the motion 

data. Ackad et al. [1] presented the Media Ribbon, a gesture-controlled public information 

display relatively similar to the Information Wall. They included a lightweight analysis of the 

data provided by the installation’s motion detection sensor, such as session duration, performed 

gestures, and the number of people in front of the display. In addition, they manually analyzed 

the depth data to evaluate how users interacted with the system. Similarly, Müller et al. [16] 

recorded depth data from six different locations and converted it into simple behavioral 

variables such as time of entry and exit. However, classifying passersby into categories was 

done manually. Walter et al. [28] captured raw depth video to support their on-site 

observations. However, they too reviewed the video data manually. Similar analysis was 

conducted by Schmidt et al. for their Screenfinity display [24]. 

Based on prior work, it seems that not many public display deployments utilize 

automatically gathered interaction and skeletal data. The few studies that do mostly utilize the 

data to support existing findings and/or invest a considerable amount of manual work, such as 

manually reviewing video logs of the installation.  

The absence of large-scale data collection in public deployments is likely explained by 

their research-focused nature. The deployments tend to be relatively short, and focus on 

investigating specific phenomena. With such installations more frequently becoming a part of 

the urban environment, the need for automated evaluation methods is emphasized to provide a 

cost-effective assessment method. Therefore, we investigated if (a) interaction and skeletal data 

can be semi-automatically analyzed and (b) whether said data could lead to actionable findings, 

and consequently act as the primary research method in the quantitative assessment of public 

displays. 
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User Behavior with Public Displays 

People tend to notice public displays more easily and be more interested in them when there 

are already people using the display. This effect is known as the honeypot effect [4]. 

Furthermore, Müller et al. [16] conducted a study on public displays in six different locations 

and not only found a significant rise in users through the honeypot effect, but also found an 

increase in the duration of interaction. 

Walter et al. note that a public setting results in most users being first time users, and 

people are prepared to invest only a short period of time to investigate a display [27]. In their 

following work, Walter et al. [28] further argue that immediate usability and clear interactions 

are key concepts for a public display. In addition, Marshall et al. [9] noticed that people trying 

out public displays tend to be impatient: interaction usually ends if users do not succeed with 

what they are trying to achieve. 

One of the most influential frameworks describing public display interaction, the Audience 

Funnel, was presented by Michelis and Müller [12]. The framework divides public display 

interaction into six phases: 

1. Passing by. The user is in the same space with the display with no intention of interacting 

with it. 

2. Viewing and reacting. The user glances at or reacts to the display. 

3. Subtle interaction. The user commits an action, e.g. waves his hand, to see what effect it 

causes on the display. 

4. Direct interaction. The user begins interacting with the display in more depth. 

5. Multiple interaction. The user leaves and comes back after a while, or switches to another 

display if multiple displays are available. 

6. Follow-up actions. The user e.g. takes pictures of the display or himself interacting with 

it. 

Mostly based on the Audience Funnel framework, Müller et al. [14] present three issues 

that public displays specifically need to address. First, the audience is not necessarily even 

aware of the public display in the first place (display blindness), or they might not be aware 

that the display can be interacted with (interaction blindness). It is thus important that the 

display aims to catch the attention of passersby in some way. Second, users need to be 

motivated to start interacting with the display. It should be noted that users typically are not 

specifically looking for a public display but rather stumble upon it. Therefore, displays should 

offer ways to pass time or contain information that is relevant to the user. Third, the fact that 

interaction with the display happens in public should be accounted for. For example, people 

may avoid interaction completely or partially because of their role (such as police officer or 

custodial services), physical limitations (for example, an elderly person not being able to 

commit certain gestures), or other traits (being afraid of public embarrassment). 

Parra et al. [21] add a fourth issue that public displays should address: users should reach 

a goal or “final stage” of interaction with the system. In many cases, the goal may be 

straightforward, for example to provide the user with information (s)he is looking for, or as is 

the case with playful installations, to make the user have a good time. As a more complex 

example, Parra et al. [21] presented an interactive display developed as part of an awareness 
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campaign. Users were provided with a web address after they had successfully interacted with 

the display, with the aim of having the users visit the website. In this case, the success of the 

installation was partly measured by how many users actually visited the site. 

Akpan et al. [2] conducted a large-scale study on the effects of space and place on social 

behavior around public displays. Their findings suggest that an optimal social context can 

encourage interaction and help overcome several issues related to public displays, even if the 

display is deployed in a poor physical space. For example, entertainment-oriented 

environments can encourage people to engage in playful behavior and to try out new systems. 

We will utilize the related work presented here when evaluating and discussing our public 

display deployment later in this article. Most notably, we will aim to classify passersby based 

on the Audience Funnel framework [12], and evaluate the use of our public display with respect 

to phenomena such as the honeypot effect [4] as well as display blindness and interaction 

blindness [14]. 

INFORMATION WALL 

Information Wall1 is a gesture-controlled public information display [11] that contains 

information relevant to the deployment location, such as the lunch menus of nearby restaurants 

as well as events taking place around the campus and the city. In the following, we describe 

the interaction design of the application, discuss the rationale behind the design choices, and 

present the system’s one-year deployment and setup. 

Reacting to Users 

We wanted to investigate different ways to react to passersby in an effort to attract people to 

explore the display. Thus, when no users are present, the wall displays a static background 

image and a dialog encouraging users to try out the system (Figure 2A).  When a user passes 

by or approaches the display, a subtle reaction is activated: a rectangular shape appears on the 

screen and reacts to the user’s movement (Figure 2A). The shape moves horizontally along 

with the user, and grows as the user gets closer and shrinks as the user gets further away. 

Whenever the user gets close enough to the display (less than 2.8 meters away), a three-

dimensional information cube is opened on the screen (direct reaction) (Figure 2B). 

The system supports two simultaneous users. In the case of one user, the single information 

cube is placed in the middle of the screen. When another user steps in, the first cube scales 

down to make room for another information cube, which appears from the side corresponding 

to the new user’s location (Figure 2C). A cube is closed whenever the corresponding user leaves 

the scene, and the leftover cube readjusts itself to make use of the whole screen. 

                                                 
1 https://youtu.be/YPhIqw5Vrz8 
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Figure 2. A) A user is tracked with a rectangular shape on the screen. An instruction 

dialog is displayed. B) A user interacts with an information cube. C) Two users 

simultaneously interacting with the wall. (Adapted from Mäkelä et al. [11]) 
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Gesture Control 

Users mainly interact with the display via an on-screen cursor that moves according to where 

the user is pointing with their hand. Pointing uses the physical interaction zone algorithm 

provided by the Kinect SDK2. All gesture interactions are one-handed interactions, however 

both hands are tracked and two cursors are displayed on the screen if the user is pointing with 

both hands. Either hand can be used to interact and the active hand can be changed on the fly. 

The content of the display is navigated by rotating the information cube in desired 

directions. Rotation involves a point-and-dwell [8] selection followed by a swipe gesture. This 

simulates the rotation of a real-world physical object. The user first triggers a button at the edge 

of the cube by pointing towards it for a short period of time, after which the users swipes 

towards the opposite edge of the cube to rotate it. Users can cancel the rotation by swiping back 

towards the edge that they started from, i.e. away from the cube. 

When a rotation button is triggered, an arrow animation is played to point to the direction 

of the rotation. Rotating to the right and left will change to the next and previous view inside 

the current section. For example, one can switch from today’s lunch menu to tomorrow’s lunch 

menu. Rotating up and down will change the section, for example from the lunch menu to the 

latest news. 

Other functions on the display and launched by utilizing the same point-and-dwell method, 

but without the additional swipe gesture. During dwelling a circular animation is displayed on 

the particular button to indicate that it is being triggered. 

In addition to rotating the cube, users can use shortcut buttons on top of the cube to quickly 

access desired sections. Moreover, detailed information, such as the ingredients of a dish or the 

full story of a news headline, is accessed by triggering the corresponding entry from the face 

of the cube, which will open a separate popup dialog. The dialog also contains a voting system 

in the form of two buttons, through which users can give a thumbs up or a thumbs down for a 

dish or an event. Cast votes are then displayed on the corresponding entry. The dialog is closed 

by triggering a close button in the bottom corner. 

Design Rationale 

We aimed to follow the Audience Funnel framework [12] in the interaction design. The 

rectangles following the passersby were meant to catch the initial attention. During the subtle 

interaction phase, the user would a) see the information cube appear and b) see the cursor move 

around the screen when the user tried out something simple, like waving his/her hand. 

Despite a growing number of public displays being deployed, few of them utilize mid-air 

gestures. Considering the novelty of the interaction modality, we decided to work with a cursor-

based application. We hypothesized that a cursor would appear as something familiar from 

other environments, as well as Kinect-based games, and not put off users so easily. 

We chose dwelling as the target selection technique as it does not require specific gestures 

and it has been found to be intuitive [28]. We used a dwell time of 1.5 seconds for all targets 

expect for the section shortcuts, which were reduced to 1.2 seconds. This was because section 

shortcuts were on the upper edge of the screen and thus users were less likely to accidentally 

hover over them or pass through them. In addition, to make target selection with the cursor 

                                                 
2 https://developer.microsoft.com/en-us/windows/kinect 
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easier, we utilized the magnetic cursor technique [10], which automatically snaps to a target 

that is close enough and moves slower while on a target to make accurate pointing easier. 

We aimed to fill the system with information that would be either beneficial or interesting 

to people spending time in or moving through the space. In the context of a university campus, 

we displayed daily lunch menus for a student cafeteria in the same building as well as 

information about public events such as talks from guest lecturers. In the third section, we 

displayed information about the different schools at the university. The purpose of this section 

was mainly to demonstrate the capabilities of the system, displaying large images along with 

paragraphs of text. Later during the deployment, we introduced a fourth section in which recent 

news from a popular Finnish news portal were displayed. 

Prior studies have found that users often interact in groups [1] and are more likely to be 

interested in a public display if there are already people interacting with it (honeypot effect) 

[4]. To support this, we designed the system to support two simultaneous users. However, due 

to the novelty of gesture-control, we included user-specific information cubes, with the 

rationale that the cubes would clearly visualize which part of the display a user is controlling. 

Implementation and User Tracking 

The system is developed on .NET Framework 4.0 using the Windows Presentation Foundation 

(WPF) library and the 3DTools plugin3. The system utilizes the Microsoft Kinect for Windows 

sensor for tracking users’ location and hand coordinates. 

Data exchange between the Kinect sensor and the Information Wall application is handled 

by a dedicated socket-based middleware component that utilizes the Kinect SDK. The data 

used for tracking users is anonymous, in that we only track the position of the users’ upper 

body joints in 3D space as well as the pointing direction of their hands relative to the screen. 

This same skeletal data is used for logging and the analysis presented in this article. The format 

of the data is described in more detail in the next chapter. 

The majority of the Information Wall’s content is fetched from external sources using 

public APIs and RSS feeds, although some content is parsed from external websites. 

Deployment 

We set up the Information Wall in a semi-public location at the university campus to run a 

longitudinal, in-situ study focused on investigating naturalistic usage. The installation location 

is a large open space on the lower floor of the main building of a local university. 

The layout of the deployment space is presented in Figure 3, and a panorama of the space 

from the perspective of the installation is presented in Figure 4. The space contains a cafeteria 

where students and staff have lunch and take breaks between classes. In addition, the space is 

adjacent to a large auditorium in which lectures and exams are held regularly. Consequently, 

students often wait around the space for entry into the auditorium. During semesters, areas 

surrounding the display are accessed by hundreds of students and staff daily. 

 

                                                 
3 https://3dtools.codeplex.com/ 
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Figure 3. Floor plan of the deployment space. 

 

 
Figure 4. Panorama of the space from the installation’s perspective. 

The Information Wall was projected on a wall surface with a ceiling mounted projector with a 

resolution of 1920 x 1080 pixels, which provided approximately 2.5 meters wide display area 

(see Figure 1). Interface sounds and audio landscape were provided by two active loudspeakers 

mounted to the sides of the display at ceiling height. The Kinect sensor was positioned at the 

horizontal midpoint under the projection display, providing a fixed point of reference for the 

collected data (all coordinates are relative to this point). 

The public deployment data set was captured between April 2013 and April 2014. In total, 

it includes user and interaction traces collected from 210 distinct days, with a total number of 

passersby being 106,637. The installation was running on most weekdays, but was turned off 

during weekends, holidays, and occasional maintenance breaks. 
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SEMI-AUTOMATED, LARGE SCALE EVALUATION PROCESS 

In this section, we present the semi-automated evaluation process, which we used to evaluate 

the Information Wall system. The process is visualized in Figure 5, and consists of four phases: 

data collection, preparation, feature extraction, and analysis. In the following, we will describe 

the four phases in detail. 

 

 
Figure 5. The semi-automated process consists of four primary phases: data collection, 

preparation, feature extraction, and analysis. 
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Phase I: Data Collection 

The data collection phase should be implemented as a part of the deployed application. In our 

case, the Information Wall system was set to automatically collect data during the deployment. 

The data can be roughly separated into two categories: skeletal and interaction data (Figure 5). 

In our case, skeletal data includes the passerby’s general location as well as the location of each 

upper-body joint in 3D space. We did not track nor record the lower body as it was not needed 

for interaction or the analysis. Interaction-related data consists of the passerby’s hand-pointing 

coordinates relative to the screen, as well as interaction events in the application, including 

information cube activations, target hovers and triggers, etc. All log entries were saved with 

both client-side and server-side time stamps. 

We aimed to capture data of all passersby within the limitations of the Kinect sensor. The 

Kinect allowed simultaneous tracking of a maximum of six people. It is possible that some 

passersby could not be recorded by the sensor if more than six people appeared at the scene, 

although this was presumably very rare. The two closest passersby were treated as potential 

users and were tracked in full detail as described above, while for the remaining four passersby 

only a general location was recorded.  

An example log entry of a single skeleton is shown in Figure 6. Different information is 

separated using a pipe character. Each log entry is started with client side and server side 

timestamps. The “_U_” communicates the beginning of user information, followed by the user 

ID and the x, y and z position (“42929;-156;-279;3223”), followed by the pointing coordinates 

for both hands (“-3,612464;1,684637;6,115403;3,989488”), followed by upper body joint IDs 

and x, y, z coordinates. The positions are reported in millimeters from the sensor’s location, x 

being the horizontal axis, y the vertical axis, and z being the distance from the sensor. 

 

During data collection, data was stored in separate files by date, and we further stored 

skeletal data and system event logs in separate files. This resulted in a collection of hundreds 

of large log files. This was done for ease of backup and to avoid data loss due to possible 

system crashes. We note here that the amount of automatically collected data - primarily 

skeletal data - may be surprising during public deployments. Gathering skeletal data several 

times per second (every 60 milliseconds in this case) for every person in the scene quickly 

results in heaps of data, even from a short interaction session. 

Phase II: Preparation 

In the preparation phase (Figure 5), the logged data is processed into a format that can be more 

easily handled. In our analysis, we wrote C# scripts to transform the large set of collected data 

files. First, we combined all skeletal data into a single file, which had to be done in several 

parts due to our machines running out of memory. Similarly, all interaction data was combined 

Figure 6. A log entry for a single user. 

2014-03-24 12:48:4.123|2014-03-24 12:48:04.127|_U_|42929;-156;-279;3223|-

3,612464;1,684637;6,115403;3,989488|6;-133,7465;175,0641;3285,178|7;-130,5533;-

2,498331;3175,068|9;-93,2767;-345,8763;3177,252|!12;56,86545;-18,49249;3427,463|13;-

207,9531;-4,714899;3464,396|15;90,94656;17,26251;3419,62 
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into one file. Next, we filtered and cleaned up the skeletal data, as the original data set contained 

raw skeletal data collected of all detected people at 60 milliseconds interval. To significantly 

reduce the number of data points for follow-up processing, we converted all skeletal entries 

into one entry from the period when a passerby or a user was standing still without interacting. 

Finally, we combined the skeletal and interaction data into one file, connected interactions to 

specific tracked users (skeletons), and ordered the entries based on their timestamps. 

It is worthwhile to note that since the skeletal data is rather generic in nature, the tools 

created for preparation and analysis should require little to no modification between studies. 

Interaction data, on the other hand, is likely to be more application-specific. With our 

deployment, interaction data consisted of the users’ pointing coordinates as well as event 

triggers in the application. In other applications, pointing data could be replaced or 

accompanied by gesture data. 

Phase III: Feature Extraction 

The feature extraction phase (Figure 5) is most crucial and characteristic part of the proposed 

process. By feature extraction, we mean the identification and calculation of relevant variables 

from the data, on which statistical analyses can be performed. To produce meaningful insights 

from the data, researchers must at this point know what they are looking for, and convert the 

data into a form that supports relevant analysis procedures. 

It is generally good scientific practice to be aware of what is being researched from the 

very beginning of a study. We agree with this; therefore, we emphasize that in the feature 

extraction phase, we refer to the definition of low-level variables and parameters, not the 

formulation of actual research questions. Thus, feature extraction deals with the very specifics 

of how to meaningfully answer the research questions. However, we also note that in some 

cases the different phases of the analysis process may not be carried out by the same party. For 

instance, data collected during a public deployment could be published for other researchers to 

utilize. In such a case, the research questions would not exist during data collection, but would 

instead have to be formulated during the preparation and feature extraction phases. 

The feature extraction phase begins by defining the variables needed to answer research 

questions. Then, one must decide how exactly the variables should be produced or calculated 

using the data available. We refer to this as parameterization: the definition of a set of rules by 

which a variable is computed. 

We provide two examples to better demonstrate variables and parameterization. As the 

first example, we wanted to see how many people approached the Information Wall from each 

direction. Consequently, this required that a variable, direction of entry, needed to be calculated 

for all users by utilizing skeletal data in the data set. For defining the direction of entry, then, 

we needed to decide how to operationalize the calculation in terms of the available logged data. 

We first calculated the angle of movement during the first 0.5 seconds for when the 

passerby was visible. If the passerby was visible for less than 0.5 seconds, or if the passerby 

moved less than 10 centimeters during that period, the angle of movement was left undefined. 

We then distributed passersby to three categories (left, right, and front) based on their angle of 

movement, each direction forming a 90-degree sector. 

For the parameterization of the direction of entry, we had to account for several factors 

specific to the deployment. Firstly, the Kinect sensor was occasionally slow to recognize 
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passersby who moved sideways. For instance, a passerby entering from the right could be 

recognized when they were already close to exiting from the left edge. Therefore, the exact 

location of the passersby could not be a parameter in calculating the direction of entry. Second, 

given that nothing else that would make passersby stop or change direction was located within 

the Kinect sensor’s field of view, we decided that a simple calculation of the movement angle 

would be sufficient for our purposes. Moreover, given the small field of view of the sensor 

relative to the size of the whole space, we deemed it unlikely that the movement patterns of 

passersby in front of the display would be complicated, unless affected by the display itself. 

The second example demonstrates a variable that could not be successfully parameterized. 

We were interested to see if our data could be used to identify passersby who looked at or 

reacted to the display, but did not stop or interact with it (i.e., the “viewing and reacting” phase 

in the Audience Funnel framework [12]). However, during the deployment, we had come to 

observe that passersby looking at the display would simply turn their head towards the display 

while walking past it, and the rest of the body remained relatively unaffected by this action. 

Considering that we only recorded the position of body parts/joints in 3D space (and not their 

rotation), we concluded that we could not parameterize whether passersby looked at the 

display. Therefore, we focused on the following phases of the Audience Funnel framework – 

subtle and direct interaction. This classification will be discussed in the following chapter, 

where we also show application-specific parameters for the classification. 

As an important takeaway from our examples, we note that manual observations play a 

role in successful parameterization, particularly in identifying factors to account for when 

calculating variables. This requires observing not only the people directly, but also the physical 

space, and identifying factors that might affect the variables. For instance, a pillar right next to 

the display blocking a walking path might affect how a direction of entry should be calculated. 

It is likely that researchers spend time on-site in the beginning of the deployment when setting 

up the system and making sure no technical faults are taking place. This phase of the 

deployment can be utilized for parameterization, and therefore, the features that researchers 

want to extract should be kept in mind in the early phases of the deployment.  

For the feature extraction phase, we wrote another script to analyze the combined log file 

produced in the preparation phase and extract all the information we wanted into a comma 

separated (CSV) file. We stored each passerby in separate rows with relevant variables. A 

subset of the resulting variables is presented in Figure 7. 

As we pointed out in the preparation phase, the collected data is partly generic and partly 

application-specific. During feature extraction phase, additional characteristics, such as those 

pertaining to the properties of the deployment space, need to be considered. We provided an 

example of defining a direction of entry for passersby – the exact same parameters could work 

for some deployments, but not necessarily for others. 
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Figure 7. Some of the variables produced during feature extraction. 

Phase IV: Analysis 

Finally, using our CSV file (Figure 7) we were able to run statistical analyses (Figure 5) using 

software such as Microsoft Excel or SPSS. At this point, running any kind of analysis based 

on the variables defined and generated in the previous phase was relatively straightforward. 

We expect that this phase of the process will be specific to each particular deployment. 

Additional data processing may be necessary to accommodate different statistical methods 

(e.g., switching between wide and long data formats). 

Summary 

The semi-automated evaluation method consists of four primary phases: data collection, 

preparation, feature extraction, and analysis. Data collection is carried out automatically by the 

system during the public deployment. The key notions here are that a) skeletal data is collected, 

i.e., we go beyond simply logging interactions with the display, and b) the amount of data is 

likely extensive and consequently non-trivial to handle as-is. 

The preparation phase largely acts as a bridge between data collection and the remaining 

phases, and is meant to ease the next steps of the process by a) combining the large set of data 

files into one, and b) filtering out and aggregating the data. 

The feature extraction phase is the crucial phase in which the potential to answer research 

questions is defined. Researchers must decide which characteristics of the data they are 

interested in, define the variables needed, and define the logic by which these variables are 

produced (i.e., parameterization). We find that such parameters can often be unique to the 

deployment – researchers must be familiar with the system being evaluated as well as the space 

in which it is deployed, and decide what makes sense for that particular installation. A valuable 

insight here is that quick observations play a role in parameterization, in identifying factors to 

account for when calculating variables.  

The analysis phase refers to statistical analyses run using the resulting data from the feature 

extraction phase. We converted the data into a single CSV file, after which running the analyses 
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was relatively trivial. The analysis phase is not unique to this process, but is nonetheless 

necessary.  

In summary, despite the semi-automated nature of our method, it does not automatically 

provide researchers with answers to their research questions. The first two phases of the 

process, data collection and preparation, are relatively straightforward. They can be automated 

to a high degree, and potentially require only little adaptation between studies. The feature 

extraction phase is where most of the work goes, and which is strongly dependent on the 

characteristics of the public display deployment as well as the research being conducted. The 

last phase, analysis, involves statistical analysis like with any quantitative data, and is therefore 

not unique to this process. 

INFORMATION WALL ANALYSIS RESULTS 

In this section, we present the results of applying our analysis approach to the Information Wall 

data. First, we divide passersby into three user types, after which we analyze movement and 

reactions of the passersby. Finally, we present differences in the behavior of individual users 

and users belonging to a group. 

User Classification 

Based on the Audience Funnel [12], we aimed to recognize subtle users and direct users within 

the passersby. The classification parameters are presented in Table 1. We categorized passersby 

as direct users if they triggered at least one target, as triggering a target required stable pointing 

towards the screen and was unlikely to happen without deliberate interaction with the display. 

Subtle users were those who did not trigger any actions, but hovered over (pointed at a target, 

but not long enough for a trigger) a minimum of two targets. We required more than one hover 

as we observed that occasionally a person walking past the system would result in the bottom-

most element being hovered over briefly, and we wanted to exclude these situations from the 

analysis. This requirement is relatively strict; as an alternative, we could have filtered out very 

short single-hovers and still classify the remaining single-hover users as subtle users. This 

would have likely increased the number of subtle users in our data set. However, we aimed to 

keep the analysis simple for this case study, while more advanced analyses are certainly 

possible. Finally, to further ensure that no passersby were accidentally classified as users, we 

required that both subtle and direct users spent a minimum of two seconds in front of the screen. 

All other passersby were defined as passive users. As discussed in the previous section, 

we excluded the “viewing and reacting” [12] category from our analysis due to some technical 

limitations as well as limitations in our data set. We discuss overcoming these limitations 

towards the end of this article. 

 

Table 1. Parameters for user classifications. 

 Time in the area Hovers Triggers 

Direct >= 2 s >= 1 >= 1 

Subtle >= 2 s >= 2 0 

Passive >= 0 s <= 1 0 
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Based on this classification scheme, we identified a total of 98907 passive users (92.8% of all 

passersby), 6241 subtle users (5.9%) and 1489 direct users (1.4%). 

In total, users hovered over targets on the screen 68707 times, and triggered 10399 targets. 

Direct users triggered an average of 6.8 targets (SD = 8.6). Passive users were visible for an 

average of 2.2 seconds (SD = 9.0), subtle users for 8.0 seconds (SD = 26.6), and direct users 

for 70.9 seconds (SD = 80.9). 

The average amount of target triggers as well as the average duration is surprisingly high. 

We hypothesized that many direct users would come to check out the next day’s lunch menu 

and then leave the scene, and thus we expected to see most direct users trigger only one or two 

targets and spend only a short period of time in the area. Of the 1489 direct users, a relatively 

substantial amount (556 users, 37.3%) did indeed trigger only one or two targets; however, the 

amount is not as significant as we expected and said users still spent an average of 46 seconds 

in the area. 

The difference between target hovers (68707) and target triggers (10399) is explained by 

the point-and-dwell mechanism and the placement of targets on the screen. Whenever the user 

begins pointing at a screen, they are likely to first hover over the button on the bottom edge of 

the information cube (close to the bottom of the screen). Similarly, users are likely to hover 

through multiple targets on their way to the final target, especially when moving to targets 

positioned close to the top edge. Moreover, some playful interaction has likely taken place, 

wherein users play with the cursors by moving them around the screen without triggering any 

targets. 

With many deployments, it could also be beneficial to reflect upon what actions 

specifically should be considered interaction. For instance, one simple use case for the 

Information Wall is that a user on his/her way to lunch would stop by at the installation to 

check the day’s menu as a form of final confirmation on whether or not (s)he wants to go to 

that particular restaurant. Since the current day’s menu is shown to users by default when they 

activate the information cube by walking close enough to the display, no gestural interaction is 

required. Therefore, spatial interaction (walking into the scene to activate the cube) is enough 

to carry out the desired task. While we did not focus on such interaction scenarios in this article, 

it could certainly warrant further studies. 

Movement and User Reactions 

We defined passersby’s entry and exit directions by calculating the angle of movement during 

the first and last 0.5 seconds that they were visible. Angles were divided into 90-degree cones, 

and hence we categorized users’ entry and exit direction as left, right, front, or unknown (Figure 

8). The direction was defined as unknown if the user was visible for less than 0.5 seconds, if 

there was backwards movement, or if there was no noticeable movement during that period. 

This happened when e.g. other people were preventing the sensor from seeing a passerby on 

entry, and when the passerby was recognized, (s)he had already stopped moving. 

Consequently, direction of entry could be defined for 63.9% of users; however, exit direction 

was defined for a significantly larger segment of passersby, 81.5%. 
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Figure 8. Users’ entry directions. 

Rates within which passersby converted into subtle and direct users for each direction are also 

presented in Figure 8. Users entering from the front were significantly more likely to become 

subtle (12.3%) and direct users (7.8%) than passersby entering from the left and right side 

(8.2%, 0.9% and 6.4%, 1.2% respectively). This might be due to the display being more visible 

from the front, and people coming from the corresponding direction could more easily observe 

the display and its possible users already from relatively far away. 

We were interested in investigating the effects of our two-level reaction to passersby. We 

displayed a rectangular shape on the screen following a user when the user was positioned more 

than 2.8 meters away from the sensor (subtle reaction). For users positioned less than 2.8 meters 

away, the information cube was opened (direct reaction). For the analysis, it made sense to 

exclude users coming from the front or unknown direction, as users arriving from the front 

would always first trigger the subtle reaction on the display. Hence, we only included passersby 

who passed by the system sideways. A total of 37952 passersby passed by the system more 

than 2.8 meters away, of which 843 (2.2%) became subtle users and 189 (0.5%) became direct 

users. A total of 23552 passersby entered the area less than 2.8 meters away, of which 3667 

(15.6%) became subtle users and 466 (2.0%) direct users. 

Individual and Group Behavior 

Of all passersby, the clear majority of 91306 (85.6%) people were lone passersby, i.e. no one 

else was seen during their presence. For direct users, 45.8% interacted without anyone else 

present, and 18.5% were accompanied by passive user(s). The remaining 35.7% were 

accompanied by subtle or direct users or a combination of user types (passive, subtle, direct). 
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Lone direct users were present for an average of 55 seconds and triggered an average of 

5.8 targets. Direct users with company, however, were present for an average of 103 seconds 

and triggered 7.8 targets on average. The highest increase in both duration and target triggers 

was observed in large groups consisting of all three user types (153 seconds, 12.4 targets). 

A total of 2552 passive users were present during direct interaction. The majority of these 

passive users, 2227 (81.7%), were standing far away enough so that a personal information 

cube was not opened for them. 

Usage Over Time 

Finally, we looked at how the amount of subtle and direct users develops over time. Figure 9 

shows the percentage of subtle and direct users from the total number of passersby within each 

month. July 2013 (month 4) was left out as the system was not running at the time due to the 

holiday season. 

It is by no means surprising for a public display system that the amount of users drops as 

time passes. In contrast, we were surprised by the very high usage percentage of the first 

months. In the first deployment month, 25.7% of all passersby were subtle users, and 4.0% 

were direct users. For the second month, the figures were 14.5% and 3.1%, and for the third 

month, 13.4% and 3.4%. This indicates that attention-wise our deployment location was 

successful and the system managed to make passersby interested enough to approach the 

display. However, the dramatic drop in usage rates can also suggest that the system failed to 

make a lasting impression, even with automatically updated content (daily lunch menus and 

latest news). 

 

 
Figure 9. Percentages of subtle users (left) and direct users (right) within each month of 

deployment. 

DISCUSSION 

In this section, we first discuss the characteristics of evaluating large displays by semi-

automatically analyzing the interaction and skeletal data gathered during a long-term 
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deployment. Then, we discuss the benefits and challenges of the method as well as the 

interrelated roles of both automated logging and observations. Finally, we discuss our findings 

from applying our method to the Information Wall system. 

Characteristics of Semi-Automated Evaluation 

We identified four primary phases in semi-automated evaluation of public displays: data 

collection, preparation, feature extraction, and analysis. In practice, these phases can overlap 

somewhat. Moreover, it is certainly possible to further automate the process, and extract 

desired variables already during the runtime of the deployment. However, this would require 

that the full process is conducted by the same party from start to finish, which is not always the 

case. 

The most defining phase of the semi-automated method is the feature extraction phase 

(Figure 5), primarily the aspect of variables and parameterization. For instance, in the case of 

the Information Wall, we wanted to classify users based on their level of interaction. For this, 

we needed to define parameters for classification, i.e., how exactly a passerby would be 

classified as a direct, subtle, or passive user. Similarly, we needed to decide how to define entry 

and exit directions, and when to ignore certain calculations if there was too little data on a user. 

The need to define parameters is not a drawback per se, but is simply something that researchers 

and practitioners need to pay attention to. 

We argue that these parameters are system and context specific, and are also dependent on 

what exactly the researchers aim to investigate. It could also be argued that parameterization is 

present in every evaluation method as well, but in most other cases the process is more implicit. 

For instance, a researcher observing an installation on-site and counting how many users enter 

the space from left, right, or front, would similarly use some implicit factors to define the entry 

direction for each user, even though it would be obvious in most cases. The requirement to 

explicate the parameters may be beneficial for researchers to better understand the 

characteristics of the behaviors they are interested in. 

One challenge that is inherent to the use of logged data, and indeed any research that seeks 

to make inferences based on such data, is choosing relevant properties of the phenomenon 

under study. Often it is possible to record much more data than is practical to store or analyze. 

In our case, for example, it would have been impractical to record all possible data properties 

exposed by the depth sensor. This should be considered in the first two phases of the process.  

Benefits of Semi-automated Analysis Utilizing Interaction and Skeletal Data 

The proposed semi-automatic process lends itself well to a number of applications. Based on 

our experiences in applying the method in the Information Wall study, we identified the 

following interrelated situations where it may provide benefits over other methods: 

• When data sets need to be collected with minimal effort over the deployment itself. 

• When large scale quantitative data collection is of interest. 

• When it is needful to study long term usage patterns of the system. 

• When the privacy of the users is of concern. 

• When studying gesture-based interfaces and proxemic interactions. 
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One of the most popular methods for gathering data in field studies have been observations, 

where one or more researchers spend time near the display and observe its use and passerby 

behavior [3;24]. However, gathering extensive amounts of quantitative data via observations 

is both time consuming and limited to what a human observer is able to record at a time. For 

instance, in the case of multiple simultaneous users, multiple observes need to be employed; 

or an observer needs to divide their attention between the users or ignore the other users to 

properly focus on one user. With automatic logging of skeletal data, there are no such 

limitations to how much data can be logged at once, beyond the limitations of the measurement 

technology. 

Our analysis on the collected data in this article was relatively simple, and it could be 

argued that similar findings could be easily reached with short-term observations. While this 

may likely be true in some cases, it is important to note that this may not always be the case 

due to a multitude of factors, such as the nature and purpose of the deployment space. For 

instance, there were an average of two to three groups per day interacting with the display, 

which totaled to around only four minutes of daily group use. On some days, there were no 

group users at all. Therefore, observers wanting to investigate group use could be on-site for 

hours, even days, without observing a single group session – and to make any reliable 

conclusions, a relatively large number of groups would have to be observed. 

Maintaining a public display with automatic logging requires considerably less effort than 

conducting in situ observations, resulting in more quantitative data with less effort. During the 

deployment of the Information Wall, a typical week of running the system only consisted of 

starting up the system Monday morning, and turning it off Friday afternoon. Our analysis 

shows the benefits by collecting traces of more than 100,000 people, and also containing all 

the possible information we could get from both the system itself as well as the Kinect sensor. 

Other studies have also reached high numbers by utilizing a similar approach. For instance, 

Müller et al. [16] used a similar method for analyzing passersby in several different locations 

simultaneously, and received data of more than 30,000 passersby in a relatively short period of 

two weeks. However, in past research it seems that even if extensive depth data is gathered, it 

is not utilized to full extent. In many cases the data is analyzed manually, and is intended to 

support observations and interviews. 

Furthermore, observation-based deployments are usually relatively short, while one of the 

most obvious benefits of logged skeletal data is being able to identify how interaction and 

reactions of passersby develops over time. For instance, our lightweight long-term analysis of 

the Information Wall revealed very high usage rates during the first three months of 

deployment, and a relatively rapid drop in the next months.  

Another benefit is related to privacy. A semi-automated process utilizing skeletal data does 

not require recording of video or any kind of material from which users and passersby could 

be identified. For example, we recorded interactions from the display and anonymous skeletal 

data of passersby, which consisted of location data for the user’s joints only. 

Furthermore, we argue that gathering skeletal data is especially useful for studying gesture-

based interfaces. First, no separate hardware or software is required as gesture-controlled 

systems already include motion detection sensors and the logic to interpret motion as 

interaction or non-interaction. Second, proxemic interactions [6] can be a major part of 

interaction in gestural interfaces. For instance, the Information Wall incorporated several ways 
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of reacting to passersby based only on their location. Capturing detailed orientation information 

inherent to the skeletal motion data lends itself well to analyzing interaction proxemics. 

Effective Collaboration between Semi-Automated Analysis and Observations  

Some benefits of conducting observations are difficult or impossible to match with 

automated logging. However, as observation is primarily a qualitative method, and automated 

logging is quantitative, we argue that they are most effective when used together. In past 

research, logged data has been used in minor roles to support findings from other research 

methods. In this work, we promote more equal use of both, with the emphasis shifting based 

on the context of research. 

A major benefit of conducting observations is their dynamic nature. For instance, 

researchers might observe a surprising incident with the display, and decide on the fly to shift 

their attention towards this phenomenon. Overall, observations are well suited for studying 

more complex behaviors. With automated logging, it is not often practical to capture the 

qualitative aspects of interaction, such as facial expressions or verbal comments, without 

compromising users’ privacy. Moreover, researchers in the field can conduct interviews with 

users as opportunities arise. With automated logging, these benefits are difficult to match. 

However, as we have shown in this work, observations are resource-intensive. A practical and 

directly utilizable model would be to use logged data to gain general insight on the phenomena 

around, and the usage of, the deployed system, and use this information for more effective use 

of observational resources. For instance, logged data could easily show the time of day when 

groups of users are generally present, or when a certain interesting phenomenon usually 

happens. One interesting avenue for future research is to examine the integration of experience 

sampling into the public display to collect subjective feedback from users when in situ 

observation and interviewing is not possible. 

In a similar manner, observations can also support automated logging. As we noted earlier 

in this article, observations played a role in the feature extraction phase of our semi-automated 

process. With observations, parameters for producing desired variables can be identified, e.g., 

to calculate movement patterns and to create rules for classifying passersby. 

Current Limitations and Future Improvements 

We experienced some practical and technical limitations during our year-long deployment that 

can be dealt with in the future, as discussed next. 

One limitation is that there are few reliable ways to recognize returning users from new 

users without relying on techniques that may compromise privacy, such as face recognition. 

Hence, analyzing multiple interactions or follow-up actions [12] of a user is difficult. 

Additionally, users in groups often discuss the display while interacting, and recording audio 

from users in a public setting is both technically challenging as well as problematic in terms of 

privacy. 

Many of the particular challenges in our example deployment were caused by the 

limitations of technology, which necessitates tradeoffs in the overall process. For example, the 

Kinect sensor also had trouble recognizing passersby who quickly moved past the display 

horizontally, i.e. those who were sideways to the display and walked fast. In these cases, we 

often caught just a glimpse of the passerby before they exited the area and we were not able to 
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determine their walking direction in a trustworthy manner. Newer sensors, such as the Kinect 

2, are faster and more reliable, and would likely solve this issue to great extent. 

Another related issue was that we were unable to separate passersby who completely 

ignored the display from passersby who glanced at the display as they walked by. This was in 

part due to us only collecting simple joint and pointing data, but also due to the aforementioned 

technical issue of not recognizing passersby early enough. For this reason, we focused our 

analysis of the Information Wall on subtle and direct users, and passive users who accompanied 

them. However, this issue could be alleviated with a simple hardware upgrade and gathering 

head orientation data. This would allow us to e.g. identify an issue of display blindness [13] or 

interaction blindness [19] with the system. 

Another challenge was that some passersby may stand or walk behind other passersby and 

thus may not be recognized right away or at all. This could be alleviated by setting up the sensor 

above the display instead of below it, giving it a better view of the space and the people. Such 

decisions should be informed by a thorough understanding of the measurement technology in 

use. 

Finally, the space in which the Information Wall was deployed is very large, and the Kinect 

sensor could only cover a small sector of it. Hence, we were not able to analyze movement 

patterns of passersby on a larger scale, particularly the exact location users were typically 

coming from. Our approach would be more beneficial in a slightly more confined space, such 

as a small lobby or a crossroad of two hallways. In our case, relevant pathways such as doors 

outside and to an auditorium as well as a nearby cafeteria were too far from our system, so 

detailed analysis of e.g. movement patterns could not be achieved. Again, this issue could be 

somewhat alleviated with a hardware upgrade, as modern motion detection sensors offer a 

wider field of view, and thus can cover a larger space. Another option would be to utilize 

multiple sensors and combine the data streams during the analysis phase. 

Usage Rates and User Behavior 

The following sections discuss the specific findings of our analysis, with an intent to 

demonstrate the usefulness of the proposed approach in acquiring insights from large scale 

usage data. Overall, our analysis revealed that the usage rates of our installation are in line with 

other studies, although our data set of more than 100,000 passersby is considerably larger than 

data sets in other studies. We identified a substantial number of subtle users (5.9%), while the 

number of direct users was 1489 (1.4%). To compare, Müller et al. had a usage rate of 4% [16], 

however they did not distinguish between subtle and direct use, but counted all interactions 

towards this figure.  

The large-scale and long-term data collection allowed us to identify an interesting 

difference between passersby entering the area from the front and passersby entering from 

either side. Users entering from the front were significantly more likely to become subtle or 

direct users (20.1%) than users entering from left or right (9.1% and 7.6%) (Figure 8). The 

difference is relatively logical in that people passing by the system sideways are more likely to 

be simply going from A to B and the most direct route is through the installation area, especially 

considering that the exit from and entry to the building was directly to the right of the 

installation, and the way to the main lobby directly to the left. On the other hand, people 

entering from the front had fewer reasons to pass by the installation space unless they were 
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interested in the system. However, this finding could also indicate that people prefer to inspect 

a display from further away first before making the decision to interact. After all, the 

Information Wall was highly visible from all angles and from relatively far away. Users coming 

in from the front likely had time to observe it as they approached it, and possibly saw someone 

else interact with the display before. 

We were surprised to see such a high number of targets triggers per user as well as 

relatively long interaction times. However, we were able to confirm that users in groups were 

more active than lone users by spending more time in front of the display and triggering more 

targets on the screen. It also seems that group size reflects the duration and the number of target 

triggers, as the most active users belonged to large groups. Ackad et al. had similar results, as 

around half of their users belonged to a group, and interacted longer and performed more 

gestures [1]. Müller et al. also reported similar results [16]. 

We argue that supporting simultaneous interaction is especially important when utilizing 

novel and expressive interaction methods such as gestures in public displays. Brignull and 

Rogers [4] note that people may choose not to interact with a public display due to fear of 

embarrassment, and we believe interacting with a friend may alleviate this issue. In addition, 

we were able to identify that while a large percentage of direct users interacted in a group, a 

large segment of those companions did not interact with the system at all. One possible 

explanation could be that people were not aware that the system supported simultaneous use. 

Hence, it could be worth considering that the display should attract passersby even if it is 

occupied by another user. 

The relatively long duration of direct users (even those who triggered one or two targets) 

suggests that users were exploring the system for the first time. Thus, it could be that very few 

users returned to use the system. We could investigate this in more detail by e.g. analyzing how 

much time on average it took for users to trigger the first target, i.e. did they know what they 

were doing or were they simply exploring. On the other hand, average durations for passive 

(2.2 seconds) and subtle users (8.0 seconds) are logical, as it takes only a few seconds to walk 

past the system, and stopping for a while to e.g. wave one’s hand should not take much longer 

either. 

Reacting to Passersby in Display Design 

Our large display application introduced a two-level reaction to passersby; a dynamic 

rectangular shape following far-away users (subtle reaction), and a personal information cube 

that was opened for passersby who were closer to the screen (direct reaction). We found that 

passersby to whom an information cube was displayed were significantly more likely to interact 

with the display. This suggests that the subtle reaction was not expressive enough to 

communicate interactivity and encourage exploration of the system; hence stronger reaction to 

passersby would be advised. Ojala et al. [20] call the issue interaction blindness, which refers 

to the passerby’s inability to notice that a display is interactive. Müller et al. [17] studied this 

phenomenon in detail, and found that displaying a users’ mirror image is more effective in 

conveying interactivity than e.g. silhouettes or abstract representations. On the other hand, the 

direct reaction seemed to work relatively well. 

We observed a phenomenon similar to interaction blindness, which could be called multi-

user interaction blindness. We found that passive users who accompanied direct users were 
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mostly (81.7%) positioned further away and hence they did not activate an information cube 

on the screen. This could suggest that people were not aware that the system supported two 

simultaneous users, and simply stood back to observe the other user. Indeed, this feature was 

not explicitly communicated, and when one information cube was open, the system did not 

react to other passersby until they came close enough for another information cube to activate. 

Our finding suggests that displays supporting simultaneous use should react to and entice 

passersby even if another user is currently using the display. 

CONCLUSION 

In this work, we introduced and studied an approach to evaluating public displays by making 

use of automatically collected anonymous interaction and skeletal data, and analyzing the data 

programmatically. We deployed a gesture-controlled public information display in a university 

campus for one year and collected an extensive data set containing traces of more than 100,000 

passersby. The data was analyzed to identify how passersby and users react to and interact with 

the public display. Our starting point was to investigate whether we could programmatically 

analyze the data and reach findings that we would have likely identified if we had been on-site 

observing users. 

The main benefits of the approach include (1) automatic gathering of large data sets 

without considerable use of resources (2) privacy-preserving, semi-automated data analysis (3) 

analyzing the effects of long-term deployment. The approach is not without its limitations: the 

dynamic nature and interviewing opportunities offered by in situ observations are particularly 

difficult to match. However, we believe the benefits of the proposed method outweigh the 

drawbacks when the aim is to analyze public display interactions on a large scale. 

To test our approach in a practical setting, we applied our process to the data captured of 

the Information Wall installation. Our most interesting findings were (1) long duration and 

high amount of target triggers for users, which could indicate that most users were first-time 

users exploring the system, and not many returned to use the system again, and (2) many users 

were accompanied by passive users who observed interaction from further away, which could 

suggest a case of multi-user interaction blindness. 

A defining characteristic of our method is the parameterization of data variables during the 

analysis process, which is a key factor in producing meaningful, deployment-specific results. 

Successful parameterization requires knowledge of the system being evaluated, the space the 

system is deployed in, as well as identification of the factors involved in passerby behavior in 

relation to the display. 

As long-term public display deployments are becoming more frequent, the need for 

improved evaluation methods is also emphasized. In past research, logged skeletal data has 

mainly been utilized to support findings from in situ observations, and has often been manually 

analyzed, resulting in a considerable amount of additional work. As we demonstrated in this 

work, logged data can be utilized more in-depth through a semi-automated process. We argue 

that our proposed process can act in a larger role, particularly for long-term deployments, and 

that observations and automated logging can support each other in a multitude of ways. 
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