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Zusammenfassung

Seit der Erfindung des ersten digitalen Computers im Jahr 1941 und später des
ersten Personal Computer im Jahr 1975 hat sich die Art und Weise, wie Menschen
mit Computern interagieren, radikal verändert. Die Tastatur ist zwar immer noch
eines der beiden Hauptgeräte für Desktopcomputer, welche heute meistens mit
einer Maus oder einem Trackpad kombiniert wird. Die Interaktion mit Desktop-
und Laptopcomputer macht jedoch heute nur einen kleinen Prozentsatz der In-
teraktion zwischen Menschen und Computer aus. Heute interagieren Menschen
meistens mit ubiquitären Computern. Während die ersten ubiquitären Computer
ebenfalls über Tasten gesteuert wurden, änderte sich dies mit der Einführung
des Touchscreens in Endverbrauchergeräte. Heute ist das Smartphone der ver-
breitetste ubiquitäre Computer, welcher stark auf die Interaktion durch direkte
Berührung als die dominierende Eingabemethode setzt. Durch direkte Berüh-
rung können Benutzer mit der grafischen Benutzeroberfläche (GUI) interagieren.
GUI-Steuerelemente können direkt durch einfaches Berühren gesteuert werde.
Gegenwärtige ubiquitäre Computer mit Berührungsinteraktion reduzieren jedoch
den Detailreichtum der Berührung auf eine zweidimensionale Position auf dem
Bildschirm. In dieser Arbeit wird das Potenzial untersucht, wie eine einfache
Berührung mit zusätzlichen Informationen über den Finger, der den Bildschirm
berührt, bereichert werden kann. Im Detail, wird in dieser Arbeit die Verwendung
der Fingerorientierung, als zwei zusätzliche Eingabe Dimensionen untersucht.
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Es werden vier Schlüsselbereiche untersucht, welche die Grundlage bilden, um
die Fingerorientierung als zusätzliche Eingabetechnik vollständig zu verstehen.
Diese Erkenntnisse bieten Designern die Grundlage, neue Gesten und Anwen-
dungsfälle zu entwerfen und dabei die Fingerorientierung zu berücksichtigen. Es
werden zunächst Ansätze untersucht um die Eingabe der Fingerorientierung zu
erkennen und Modelle bereitgestellt um die Orientierung des Fingers zu ermitteln.
Zweitens werden Designrichtlinien vorgestellt, um eine bequeme Verwendung
der Fingerorientierung sicherzustellen. Drittens wird eine Methode präsentiert,
welche neue Interaktionstechniken in sozialen Umgebungen analysieren kann. So
wird es ermöglicht, neue Anwendungsfälle auf eine mögliche Beeinträchtigung
von Konversationen zu untersuchen. Zum Schluss werden drei Möglichkeiten
vorgestellt, wie neue Interaktionstechniken wie zum Beispiel die Fingerorientie-
rungseingaben dem Benutzer mitgeteilt werden können. Diese Arbeit trägt dazu
bei, um die Fingerorientierung vollständig zu verstehen. Am Ende der Arbeit
werden diese vier Schlüsselbereiche zusammengefasst um eine Basis zu schaf-
fen in der Zukunft weitere Interaktionstechniken auf dieselbe Art und Weise zu
untersuchen und bewerten.
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Abstract

Since the first digital computer in 1941 and the first personal computer back in
1975, the way we interact with computers has radically changed. The keyboard
is still one of the two main input devices for desktop computers which is accom-
panied most of the time by a mouse or trackpad. However, the interaction with
desktop and laptop computers today only make up a small percentage of current
interaction with computing devices. Today, we mostly interact with ubiquitous
computing devices, and while the first ubiquitous devices were controlled via
buttons, this changed with the invention of touchscreens. Moreover, the phone
as the most prominent ubiquitous computing device is heavily relying on touch
interaction as the dominant input mode. Through direct touch, users can directly
interact with graphical user interfaces (GUIs). GUI controls can directly be
manipulated by simply touching them. However, current touch devices reduce
the richness of touch input to two-dimensional positions on the screen. In this
thesis, we investigate the potential of enriching a simple touch with additional
information about the finger touching the screen. We propose to use the user’s
finger orientation as two additional input dimensions. We investigate four key
areas which make up the foundation to fully understand finger orientation as an
additional input technique. With these insights, we provide designers with the
foundation to design new gestures sets and use cases which take the finger orien-
tation into account. We first investigate approaches to recognize finger orientation
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input and provide ready-to-deploy models to recognize the orientation. Second,
we present design guidelines for a comfortable use of finger orientation. Third,
we present a method to analyze applications in social settings to design use cases
with possible conversation disruption in mind. Lastly, we present three ways how
new interaction techniques like finger orientation input can be communicated
to the user. This thesis contributes these four key insights to fully understand
finger orientation as an additional input technique. Moreover, we combine the key
insights to lay the foundation to evaluate every new interaction technique based
on the same in-depth evaluation.
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1
Introduction

Since the invention of the first digital computers, not only computing power,
and memory had an exponential growth but also the number of systems with
computing power. The first computer, the Zuse Z3 (1941) and its successor, had
a different form than what we today envision as a computer. The Zuse Z3 was
designed to serve multiple people. Later (1975) with the first true “personal
computer,” the Altair 8800 created by Micro Instrumentation and Telemetry
Systems, the scenario shifted towards a one-to-one mapping. Here, the concept
emerged that all humans have their own computing devices that serve the needs
of one person. However, today we see a new mapping, computers are everywhere,
often referred to as ubiquitous devices, and can be accessed by one or many
humans at the same time. Thus, the new mapping is where one human can use
multiple computing devices at once. This was envisioned by Mark Weiser [177]
almost three decades ago. He envisioned tabs, pads, and boards which always
surround us. Today, we see them as ubiquitous devices to fulfill one task or even
to fulfill multiple tasks at the same time. With the increasing number of devices
which can serve humans at any given time, the interaction between humans and
computers becomes essential as the exchange of information between them is one
major step in towards solving a problem.
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In the past, we saw that humans make use of one or more computing devices
to solve a problem. However, Licklider [101] and recent trends suggest that when
humans and computing devices work together to solve a problem in symbiosis,
they outperform both as individuals. Thus, the interaction between humans and
computers is today a bidirectional interplay. Computing devices can alert the
human, and thereby get their attention to inform new information, problems, and
solutions. On the other hand, humans can provide the computer with information,
problems, and solutions. Moreover, as we see an ever-increasing number of
devices which surrounds us one of the limiting factors to utilize them is how we
interact with these devices. While speech, and gesture interfaces have been devel-
oped over the last decade, touch interfaces are the dominant input for computing
devices. New generations of laptops and stationary large high-resolution system
incorporate direct touch interaction of laptops and stationary system incorporate
direct touch interaction. While these devices start to incorporate touch their over-
all market share is small. On the other hand, in 2017, 5 billion mobile phones were
in use and 66% of the world’s population used one1. Thus, over the last decade,
smartphones have not only become the primary device for mobile interaction
but also serve as the primary computing device for many users. Therefore, the
phone is the most ubiquitous computing devices and here we see that all phone
companies are heavily relying on touch interaction as the dominant input mode.

Touch interaction is the most common mode of interaction with ubiquitous
computers; however, today’s implementation of touch interaction is mostly limited
to a 2D point approximated through the fingers position on the touch surface. This
2D point neglects the diversity with which we use our hands in communication
and to control physical tools. Through direct touch, users can intuitively interact
with the graphical user interface (GUI). GUI controls can directly be selected by
touching them. Here, the touchscreen relates merely the 2D touch point retrieved
from the fingers position to the GUI control. However, the finger touching the
surface delivers a wide range of information which could potentially be used
to enrich the expressiveness of touch interaction, such as dwell time, pressure,
or finger-aware interaction. Moreover, Holz and Baudisch further found that
there is an offset between the point where the user assumes to have touched the

1http://www.gsma.com/mobileeconomy/
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surface and their actual finger position [69, 70]. Holz and Baudisch concluded that
touch is not a 2-dimensional interaction technique, but a 6-dimensional one [70],
involving the finger position, orientation, and pressure. They showed that direct
touch needs to be described by the 3D finger orientation relative to the touch
surface. While touch can be improved using more dimensions, we argue that
the limited expressiveness of a 2D touch point, as implemented today, can be
enriched by used the finger orientation as additional input dimension.

To address the limited expressiveness of 2D touch interaction, commercial
devices, as well as previous research, presented a wide range of on-screen inter-
action techniques to enhance the 2D touch point derived by the touching finger.
Already in the first version of Android and iOS, they leveraged the time dimen-
sion (dwell time) to provide the long press. With the iPhone 6s in 2015, Apple
introduced 3D Touch which adds a pressure dimension to the interaction. In the
current implementation, both methods are used to modify the touch input and alter
the action. Researchers have investigated a wide range of touch input extensions:
finger-aware interaction [21], finger shape [139], finger size [10], part of the
hand [58], palm input [100], pressure [146], and finger roll [151]. Moreover,
researchers have focused on how to utilize the finger orientation as an additional
input dimension to enhance the expressiveness of a 2D touch point.

While we see a large body of work addressing the problem of limited expres-
siveness of 2D touch interaction, presented solutions have all been studied to
tackle one of the many issues ranging from the recognition to the design of new
applications. However, not the full impact of each of the new methods as a whole.
Thus, in this thesis, we seek to understand one enhancement method in detail.
In the following we focus on finger orientation as a new interaction method to
enhance the expressiveness of 2D touch interaction.

1.1 Definition of Finger Orientation

The finger orientation can be defined by three rotations with respect to a defined
coordinate system. We will use Tait–Bryan angles through the thesis. Moreover,
we will use the names: pitch, roll, and yaw to describe the rotation around certain

1.1 | Definition of Finger Orientation 19



yaw

pitch

Figure 1.1: Examples of finger orientations in a mobile setup. Finger orientation input

with pitch and yaw input can enlarge the input space for touch surfaces.

axes which roots in the naming for the aircraft rotations1. The yaw axis is defined
to be perpendicular to the sides of the finger with its origin at the tip of the finger
and directed towards the lower part of the finger, see Figure 1.1. The pitch axis
is perpendicular to the yaw axis and is parallel to the sides of the finger with
the origin at the tip of the finger and directed to the right side of the finger, see
Figure 1.1. The roll axis is perpendicular to the other two axes with its origin at
the tip of the finger, and is directed away from the root of the finger. We define
yaw as 0◦ when the finger is parallel to the long edge of the touch surface (when
in horizontal mode) and increases when the finger is rotated counterclockwise.
We define pitch as 0◦ when the finger is parallel to the touch surface, i.e., the
entire finger touches the surface. Finally, roll is 0◦ when the finger pitch axis is
parallel to the touch surface and increases when the finger is rotated clockwise.

1https://www.grc.nasa.gov/WWW/K-12/airplane/rotations.html
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Previous work in human-computer interaction (HCI) on the use of the finger
orientation is as an additional input the pitch and yaw axis for interaction, cf.
Xiao et al. [188] and Kratz et al. [83]. Moreover, research in HCI commonly
uses the roll dimension as an separated input dimension known as roll interaction
which is studied from pitch and yaw due to the raising complexity of the input, cf.
Roudaut et al. [151].

In this thesis, we will use the mathematical definition for orientation as
presented above. However, when referring to “finger orientation”, we only use
pitch and yaw as two additional input dimensions as additional input dimensions.

1.2 Research Questions

We identified four key areas which need to be addressed to fully understand the
impact of a new interaction technique. We address these four key areas in this
thesis concerning finger orientation as an additional input dimension to enhance
the expressiveness of a 2D touch point. Therefore, in the following, we outline
our four research questions upon which this thesis is built on and structured by,
Table 1.1 presents an overview of all research questions. First, we identified
that the recognition of an interaction method needs to be tackled. RQ1 therefore
directly addressed the recognition problem. While RQ1 has been addressed in
the past by, e.g., Xiao et al. [188] we see the need to improve the pitch and yaw
recognition further. Second, to enable interface support for the new interaction
technique ergonomic constraints needs to be identified. With RQ2 we raise the
question to what extent can a human perform different finger orientation inputs.
In detail, which are the comfortable orientations that humans can perform with
their finger? Third, before releasing a new interaction technique, it is of the
need to understand the social implications; thus, an evaluation of how the new
interaction technique would affect society. RQ3 addresses the social component
of our in-depth analysis of finger orientation, with this research question we aim
to understand how finger orientation affects face-to-face conversations. Finally,
with today’s advanced interaction technique we see that they get implemented,
but the way in which they get communicated to the user is unclear; we see this
last area as an issue of discoverability. RQ4 is devoted to addressing the issue of
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Table 1.1: Summary of the research questions in this thesis.

Topic No. Research Question Chapter

Recognition RQ1 How can finger orientation be detected? 3

Ergonomics RQ2 What are the ergonomic constraints of
using finger orientation as an additional
input?

4

Social RQ3 Which social implications has using fin-
ger orientation as an additional input?

5

Discoverability RQ4 How should finger orientation input be
communicated to the user?

6

discoverability for finger orientation in line with guidelines by both Shneiderman
et al. [160] and Norman [138], as to essential use case it is important to understand
how developers and researchers can communicate finger orientation to the human.

1.3 Research Context

The research that leads to this thesis was conducted at the University of Stuttgart
in the years between 2014 and 2018 in the Socio-Cognitive Systems group.

Cluster of Excellence in Simulation Technology The main part of this thesis
was conducted with the scope of the Cluster of Excellence in Simulation Technol-
ogy at the University of Stuttgart as part of the project network “Reflexion and
Contextualization.” Within this context, this thesis was undergoing a mid-term
evaluation examined by Prof. Dr. Niels Henze and Prof. Dr. Andrea Barth from
the Institute for Computational Methods for Uncertainty Quantification.

Socio-Cognitive Systems Group, University of Stuttgart This thesis is built on
the following six publications: [117, 118, 121, 124, 126, 132]. Particularly
successful was the collaboration with Katrin Wolf and Paweł W. Woźniak as we
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received an Honorable Mentions Award at the MobileHCI’17 conference for our
first paper on how ergonomic constraints affect the feasibility of finger orientation
as additional input [132].

The papers presented in this thesis, are inspired by collaborations with Huy
Viet Le [88, 90, 91, 93–97, 100]. Moreover, we held a number of tutorials on
machine learning for HCI research [92, 99, 119]. Furthermore, we published
a number of papers in the domain of mid-air pointing [127, 129, 158]. Ad-
ditional collaboration with research form the same team let to the following
publications: [61, 62, 120, 123, 125, 170, 175].

Human-Computer Interaction Group, University of Stuttgart The six papers
which lead to this thesis are mainly inspired by collaborations with Lars Lis-
chke [102–107, 114], and Markus Funk [35–40]. Additional collaboration led to
the following publications: [82, 131, 150, 156, 157, 181, 183, 187].

External Collaborations Work with collaborators around the world led to a set of
publications: Jens Emil Grønbæk (Aarhus University, Denmark), Zhanna Sarsen-
bayeva (The University of Melbourne, Australia), Giulio Jacucci (University of
Helsinki, Finland) [128], Markus Gärtner and Jonas Kuhn from the Institute for
Natural Language Processing at the University of Stuttgart [51], Anna Kötter-
itzsch, Julian Fietkau and Michael Koch from the Universität der Bundeswehr
München and Benjamin Weyers (RWTH Aachen University, Germany) [86],
Morten Fjeld (Chalmers University of Technology, Sweden), Nitesh Goyal (Cor-
nell University, US), Przemysław Kucharski (Lodz University of Technology,
Poland) [185], Lewis L. Chuang, Alessandro Nesti and Heinrich H. Bülthoff,
(Max Planck Institute for Biological Cybernetics, Tübingen, Germany) [130], and
Ashley Colley (University of Lapland, Finland) [22].

1.4 Thesis Outline

This dissertation comprises seven chapters, the bibliography, and the enumerating
lists. This work contains the results and evaluations of a total of eight empirical
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studies conducted between summer 2014 and summer 2018 as well as an addi-
tional literature review in the related work chapter. This work is structured as
follows:

Chapter 1: Introduction contains the description and motivation of this thesis,
an overview of the research questions, and this outline.

Chapter 2: Related Work comprises the related work to put finger orientation
in perspective with other on and off screen interaction techniques. More-
over, this Chapter also contains the specific related work to connect the
four research questions with its specific related work.

Chapter 3: Recognition contains two approaches to extend existing recognition
approaches for finger orientation detection. We first show how we can use
static offset correction models to improve a depth camera recognition
approach and moreover show that this approach not only works for the
index finger but also for the middle, ring, and small finger. Second, we
use Deep Neural Network (DNN) to improve the recognition when using
capacitive images. This chapter addresses RQ1.

Chapter 4: Ergonomic Constraints investigates the feasibility of using finger
orientation as an additional input. Here, we first investigate the input range
for table tabletops in a static setup. Second, we extend this to a truly mobile
scenario to understand how mobile scenarios influence the feasibility of
finger orientation and, moreover, how this affects the orientation of the
mobile device. In this chapter, we address RQ2.

Chapter 5: Social Implications deals with the question of how does finger ori-
entation possible affect social settings. We first present and evaluate a new
mixed-method approach which lets researchers evaluate any interaction
technique in social settings. We, then, use this new approach to under-
stand how finger orientation effects face-to-face conversations. Hereby, we
answer RQ3

Chapter 6: Discoverability addresses the challenge on how finger orientation
can be rendered to the user. Here we rendered an analysis which addresses
not only finger orientation but a range of new interaction techniques to
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understand how new interaction techniques, in general, should be rendered
to the user. We identified a set of possible solutions which we validated to
uncover their advantages as well as disadvantages. Thus, we address RQ4
concerning finger orientation but also present possible ways to communicate
new interaction techniques in general.

Chapter 7: Conclusion summarizes the findings presented in this thesis. More-
over, we link the presented in-depth analysis of finger orientation to other
interaction techniques and how they can benefit from the structured analysis
presented in this thesis.
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2
Related Work

New interaction techniques to enhance input for mobile computing devices can be
divided into off-screen interaction techniques and on-screen interaction techniques.
While one-screen interaction are performed on the touchscreen itself, off-screen
interaction is performed on the device but not on the screen. For off-screen
interaction techniques the most prominent are Back-of-Device (BoD) interactions.
For example, Le et al. [95, 98] used a BoD touch panel to enhance one-handed
smartphone interaction and further presented a novel smartphone prototype that
registers touch input on the whole device surface to enable use cases such as grip
recognition or touch input on the whole device surface [97]. On the other hand we
see the enhancement using on-screen interaction techniques. Here, previous work
presented a wide range of novel modalities to enhance touch input on touchscreen
devices. Amongst others, these include using the finger shape [139] and size [10],
parts of the hand [58], and finger pressure [146]. Moreover, Wang et al. [172]
proposed the use of the finger orientation for interaction with tabletops. Wang and
Ren [171] proposed use cases, such as selecting items in a pie menu by rotating the
finger to make use of the new input dimension. Later, Xiao et al. [188] enlarged
the set of use cases to the smartwatch domain. Z-touch by Takeoaka et al. [164]
used finger pitch angle as an input source gained from a infrared camera beneath
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the touch surface in a tabletop setting, for controlling Bézier curves in a drawing
application. Rogers et al. [148] as well as Xiao et al. [188] proposed new GUI
controls such as rolling context menus and circular sliders where the finger’s yaw
angle is mapped to a “twist” sensitive control.

In the following, we present the related work for our four sections which will
lead to addressing the research questions (RQs). In line with RQ1 (see Chapter 3)
we will present related work on detecting finger orientation. Second, we present
work in the domain of RQ2 (see Chapter 4) by covering work in the domain
of ergonomic constraints. Next, we focus on RQ3 (see Chapter 5) and present
relevant work to support and outline the fundamentals of the research question.
Lastly, we present related work to also link RQ4 (see Chapter 6) to previous work.
Finally, we will summarize the related work and highlight potential shortcomings
of the work that has been done in the domain of finger orientation as an additional
input dimension to enhance the expressiveness of a 2D touch point.

2.1 Recognition

Evaluations of the input such as finger pressure [146] have shown that they are
already suitable for frequent use. One input modality which was investigated
in a wide range of prior work, and is still not usable in typical smartphones, is
the use of the finger’s pitch and yaw angle. A number of researchers [83, 148,
188, 189] presented different approaches to estimate the finger orientation on
commodity smartphones. Being able to determine the finger orientation enables
use cases such as increasing touch targeting accuracy using the pitch angle [70],
manipulating 3D objects, zooming, or setting values on a small touchscreen (e.g.,
smartwatch) by changing the finger orientation. Over the last decade, multiples
attempts have been made to add the finger orientation to the input space. Initial
work on the use of finger orientation as an additional input channel [171, 172]
was based on a tabletop setup with back projection and determined the finger
orientation from the finger’s contact area. Dang and André [26] followed up on the
same approach and improved it further. Kratz et al. [83] attached a depth camera
above the touchscreen to estimate the finger orientation and showed that users
could consistently select and hold given target positions. While the estimation

28 2 | Related Work



works adequately, this approach requires an additional depth camera attached
to the device which mainly is a prototyping tool. Rogers et al. [148] built a
custom device based on conventional capacitive sensors to show the feasibility of
estimating the finger orientation. Further approaches used touchscreens that sense
the fingers proximity to the display (e.g., Hinckley et al. [65], and Samsung’s
AirView) to reconstruct the 3D finger position. Other approaches attached a
mirror to a smartphones’s front-camera to capture the finger orientation when
touching the display similar to Wong et al.’s work [184]. However, they all have
huge drawbacks, either they are bulky (depth camera, and mirror), are not mobile
(tabletops), have no display (custom device), or lag in accuracy.

To enable finger orientation estimation on off-the-shelf smartphones without
the need for additional sensors, researchers started to use the capacitive images
provided by capacitive touchscreens. A capacitive image describes the differ-
ences in electrical capacitance between a baseline measurement when no finger
is touching the screen, and a current measurement when a finger touches the
screen. Amongst others, previous work used these images for biometric user
identification [53, 71], hand grip recognition [16, 93], and envisioned a wide
range of other use cases such as determining user’s handedness, adaptive GUIs
based on finger position, or predicting user actions [97]. Zaliva et al. [189] used a
sliding window approach combined with an artificial neural network to estimate
the finger’s pitch and yaw orientation. However, this was done on a table top
and used a sliding window approach to calculate the pitch and yaw angle of the
finger. Due to the sliding window approach, an unavoidable latency is introduced
while absolute input based on finger orientation is not possible. Similar to our
work, Xiao et al. [188] used Gaussian process (GP) to estimation the pitch angle
based features gained from the capacitive images of an off-the-shelf smartphone.
However, for yaw, they used a simple heuristic. Their evaluation revealed an
accuracy that is still not suitable for daily use.

While in 2011, Henze et al. [60] showed that touch screen offsets can be
modeled using a polynomial function, Weir et al. [176] later showed that GPs
are suitable to model the offsets for two-handed interaction and even improve
the touch accuracy. Recently, Murray-Smith [135] proposed using Convolutional
Neural Networks (CNNs) to improve touchscreens’ capabilities further. With this
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recent progress in machine learning, CNNs are now the state-of-the-art approach
to train models based on images [84]. As CNNs require a large data set to be
trained on [161], we conducted a study to collect a large number of capacitive
images that are automatically labeled with pitch and yaw angles by a motion
capture system as ground truth. Based on this data set, we train estimation models
using different machine learning algorithms, starting from the recent work by
Xiao et al. [188] over established machine learning algorithms such as k-nearest
neighbor (kNN) and Random Forest (RF) and eventually showing the best results
with CNNs.

2.2 Ergonomic Constraints

Ergonomic constraints have been observed in various prototypes using touch in-
terfaces. Le et al. [95] argue that designers should consider ergonomic constraints
when developing single-touch BoD interaction techniques and therefore studies
are needed to understand how users interact with devices. Colley and Häkkilä [21]
found that when using finger-specific interaction, it is necessary to pay attention to
ergonomic limitation. They state, that the ring finger is not suitable for interaction.
Le et al. [96] studied the range of the fingers when holding smartphones and areas
that can comfortably be reached. They proposed design guidelines to ensure an
ergonomic placement of interactive elements. Hoggan et al. [67] found that the
feasibility of touch rotation depends on the rotation angle, and input becomes
harder when the hand rotation increases. Xiao et al. [188] identified additional
ergonomic problems when using enriched touch input. Long fingernails made
a large pitch unfeasible to perform. Wolf et al. [182] further showed that the
feasibility of pitch, yaw, drag, and finger lift gestures on hand-held devices de-
pends on the grip and the touch location. They found that significant deviations
from a natural grip cause ergonomic problems, especially for one-handed interac-
tion. Beyond single-touch interactions, Lozano et al. [110] showed that designers
need to consider ergonomic factors when designing new multitouch interaction
techniques. Moreover, Goguey et al. [43] investigate which pitch and roll angles
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occur in a tabletop scenario when performing atomic tasks such as tab and drag.
However, in a mobile usage scenario, the user is not restricted to arm movements
or touch surface orientation.

Overall, previous research highlighted the importance of extending the input
space of touch interaction. In particular, determining the finger orientation was
extensively studied by previous work. A growing body of work presented use
cases for using the finger’s orientation as an input technique. While ergonomic
constraints have been studied for static tabletop-like scenarios, previous research
did not consider two-handed interaction scenarios. This is especially surprising
as two-handed interaction is much more common than tabletop interaction. Fur-
thermore, being able to rotate the touchscreen with the hand that holds the device
will likely make many finger angles much easier to perform. Therefore, results
from previous work cannot be transferred to mobile interaction, the most common
application of touchscreens.

2.3 Social Implications

As new interaction techniques can disrupt social settings, this section presents
previous research which enable analyzing interaction techniques in social settings.
First, we highlight the recent trend in designing for collocated interactions and
showcase the social goals that recent systems have addressed. Secondly, we
look at how past research has evaluated interaction techniques that were to be
used during conversations. Lastly, we reflect on previous work addressing the
disruptiveness of technologies in a social context.

2.3.1 Collocated Interactions

Designing interactions for settings where users are physically co-located and sup-
port social interactions through technology has received considerable attention in
HCI. Lucéro et al. [111] explored how smartphones can support conversations and
enable media sharing to enrich encounters for sitting around a table. They created
the technical means to share photos easily during conversations. In a similar vein,
Jarusriboonschai et al. [77] designed an application for icebreaking where users
sitting in a group were prompted to interact with each other. Researchers have also

2.3 | Social Implications 31



designed systems to specifically address the content of the conversation. Wang
et al. [173] delivered pictures during conversations to stimulate brainstorming.
While these past works explored how conversations can be stimulated, we look
into how already established conversational setting can be less negatively affected
by technology.

Previous work also investigated approaches for delivering messages without
causing unnecessary disruptions. Woźniak et al. [186] investigated how amateur
runners can communicate with their supporters while participating in a race
without losing immersion, using ambient light feedback and vibration. Similarly,
Chen and Abouzied [19] explored how strangers could be informed about their
shared interests without disrupting the typical interactions during an academic
conference. Again, ambient light feedback was used. Alternatively, tools by
Goyal et al. [46, 50] devised the notion of "implicit sharing": an automated
way to share insights socially between collaborators, requiring minimal effort to
share. Our work is inspired by these approaches as we look for ways to minimize
disruption in social settings.

Another strain of work has explored how users could become more aware of
each other’s activities in social settings. Social Displays [78] used an additional
display on the back of the device to engage other users. Pearson et al. [143] inves-
tigated how the smartwatch screen can be used to display notifications to others
close by. Fischer et al. [33] investigated how groups develop strategies to handle
notifications while engaged in collaborative activities. Paay and Kjeldskov [142]
looked into augmenting public places to better support social activities. Finally,
Fjeld et al. [34] proposed a vision where civic environments could be optimized
for meaningful discussion. All of these systems call for building extensive techni-
cal support for social interactions, but they do not investigate the risk of disruption
that technology may generate.

2.3.2 Evaluating In-Conversation Interactions

There is no standard method for measuring engagement in conversations in
HCI. However, research in Psychology has built on the understanding of gaze
in social interaction for measuring engagement. Kendon [81] showed that gaze
gives important visual feedback in conversation, both for the speaker and the
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listener. Based on this, Vertegaal et al. [169] analyzed gaze behavior during
discussions of three persons. Kendon [81] as well as Vertegaal et al. [169]
analyzed conversations of about 8 minutes. Vertegaal et al. [169] showed that
listeners look significantly more at the person talking than at others, while the
speaker looks at the addressed persons equally. Bednarik et al. [2] proposed using
gaze to indicate the engagement in video conferences. Shell et al. [159] proposed
observing users’ gaze to determine the attention on a system, and thereby cause
different actions.

Jokinen et al. [79] show that human behavior in a three-party dialogue can be
studied with the help of eye tracking; however when studying behavior of humans
in a larger groups videotaping is favored over eye tracking. Chattopadhyay
et al. [17] used this technique to study the impact of a collaborative presentation
platform on the presenter and the listeners, while Rico et al. [147] used only
interviews to evaluate the social acceptability of gestures after performing them
in the wild.

Already in 1980, Goodwin [44] presented work using a video coding method
to analyze face-to-face conversations. He transcribed the conversation down to
phrasal break, false starts, long pauses, and isolated ungrammatical fragments
and further they enriched the transcript with the gaze direction of both parties.
In recent related work, Brown et al. [14] studied the impact of search results
and phones on conversations. Therefore, the authors recorded 24 hours of video
material, in which one researcher flagged 205 clips with a length of one to two
minutes for further analyzes. These 205 videos have been coded and transcribed
to understand the influence of phones in a face-to-face conversation. McMillan et
al. [133] analyzed the effect of smartwatch use. They conducted a study in which
they recorded 168 hours of material. They coded clips in which a smartwatch
was present and extracted instances to identify effects of using a smartwatch.
These studies show the large effort that has been put into studying this space
qualitatively. However, researchers like Okamoto et al. [141] has raised questions
of the validity of these coding techniques. They identified a influence of the
coding person on the results.
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2.3.3 Disruptiveness in CSCW

Borst et al. [11] reviewed how an interruption disputes a task and found that users
could be interrupted in a low-problem state and maintain the problem state. On
the other hand, Chen and Vertegaal [18] focused on reduction of interruptions
whenever the user’s mental load was excessive. Hudson and Smith [74] discussed
the fundamental trade-off between awareness and disruption. In their work, they
highlighted that the trade-off is unavoidable and needs to be studied independently
for usage scenarios. Tolmie et al. [165] investigated interruptions in game play.
Their solution tries to make interruptions visible and available to prevent them.

Trbovich and Harbluk [166] investigated the impact of cognitive distribution
on driving behavior. They observed a change in driver visual behavior when
using a speech-based interaction while driving. Bogunovich and Salvucci [8]
investigated the direct effect of an interruption on the primary task. They found
that the ringing duration in a phone ringing scenario had a significant impact on
an email answering task. In contrast, Iqbal and Horvitz [76], in their analysis
of a two-week study, found that desktop notifications created awareness but
reduced task switching as explicit monitoring was not needed any more. Dabbish
and Kraut [24] looked at awareness displays and social motivation for team
members and showed that the timing of the interruptions by the awareness displays
influences the performance. These works show that managing interruptions may
play a crucial role in the success of a technical intervention in a social setting.
Similarly in a social setting, Goyal [47] found that mobile interruptions by partners
can prove dangerous towards collaborative data analytic challenges. The Author
found that using acceleration of psycho-physiological sensors like GSR as a
metric can help alleviate disruptions caused by such interruptions. This thesis
is inspired by the above findings and continues to help identify ways we can
design for better interruption management by understanding the disruptiveness of
different interaction techniques.

Su and Wang [162] observed phone usage in pubs over three years. They found
that phones could help enhance conversations but also cause disruption. This was
confirmed in a similar study by Porcheron et al. [144]. Similarly, Ofek et al. [140]
investigated on how to effectively deliver information to interlocutors during a
conversation. Their study revealed that delivering batches of visual information
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was the most effective. Newman and Smith [137] adopted a similar approach to
study the influence of paper document and laptop usage in conversations. They
concluded that providing assistance to keep the time short would help to cut
time spent working on the laptop. Boyd et al. [12] developed SayWAT, a device
that helped adults with autism to focus on face-to-face conversations. Moreover,
Exposito el at. [32] proposed a system to reduce obtrusive note taking while
collaborating remotely. They investigated selecting through eye tracking cues
combined with foot-based gestures.

2.4 Discoverability

While Shneiderman et al. [160] and Norman [138] both argue for interaction
discoverability, today’s mobile devices look different. Apple, as one of the main
players in the mobile market with over one billion active devices1, use the “Tips”
app2 on all their iOS devices to introduce new features by triggering a notification
and guiding the user through a tutorial. HTC’s “Edge Sense” is communicated to
users already during device setup and an additionally pop-up is shown whenever
Edge Sense can be used.

The pinch-to-zoom gesture is available on all major smartphones, Microsoft
Windows’ touch interface, digital cameras (e.g. Sony Alpha a7 iii), and computer
trackpads. However, an on-device communication concept was never developed.
The two-finger gesture dates back to 1985 when Krueger et al. [85] used the
index finger and the thumb to indicate the size of an ellipsis. One of the first
occurrences where pinch-to-zoom is described is by Rubine in 1992 [152]. In
2005, it was used by Han [56] in a tabletop scenario. However, until 2007 it
was not used for consumer devices nor was a strategy developed to communicate
the pinch-to-zoom gesture to users. With the first iPhone, the gesture became
available in a consumer product but a way to communicate the gesture on the
device was not implemented. Instead, Apple used the presentation of the iPhone3

1https:

//apple.com/newsroom/2018/02/apple-reports-first-quarter-results/
2The “Tips” app by Apple https://tips.apple.com/en-us/ios/iphone
3Macworld San Francisco 2007 Keynote 2007-01-09:

https://youtube.com/watch?v=t4OEsI0Sc_s
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to communicate the gesture live on stage by showcasing it twice, once for photos
and later for maps. The presentation of the iPhone and subsequent ads by Apple
explained the gesture to potential users which emerged as a cross-platform gesture
in the following years.

Samsung’s launcher shows a line on the side to indicate that a swipe to the
center of the screen allows to open a shortcut menu and the iPhone X presents a
swipeable line at the bottom of the screen as a replacement for the home button.
A wide range of opportunities to use swipe interactions, for example in the
Gmail app which allows swiping left or right to archive a mail, are not visually
communicated. The iPhone’s force touch allows to preview and open content
and is also not visually communicated. Instead, it was presented in an Apple
keynote and subsequent ads. The longpress in the Android eco-system is never
communicated. Users must discover the input technique. Lastly, another gesture
which became a cross-platform standard is the “pull-to-refresh” gesture, which is
implemented by all major apps, e.g., Gmail, Facebook, and Instagram but never
communicated to the user.

2.5 Summary

In this chapter, we presented the previous work related to using finger orienta-
tion. First, we present previous research in respect to the recognition of finger
orientation as an additional input method on tabletops as well as mobile devices.
We present approaches to recognize the orientation of the finger and show that
while they improved over time, they are not ready to use for consumer electronics.
Second, we present research done which link interaction to ergonomic influences
as well as know ergonomic constraints. Here we stress that finger orientation
was not evaluated from an ergonomic point of view yet. Third, we address the
domain of social acceptability and descriptiveness though technologist. Here,
we conclude that so far none of the presented approaches allows for a quick and
easy analysis during one iteration of the human-centered design cycle. Lastly, we
discuss that, while UX designers proposed a set of rules for good design practices,

36 2 | Related Work



today’s interface designers do not necessarily follow them. Thus, we show that
while rules exist, it is unclear how to introduce the user to novel interaction
techniques.
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3
Recognition

In this chapter, we investigate possible ways to recognize the finger orientation
while touching a surface (RQ1). First, we investigate using a depth-camera over
the touch surface, an approach proposed by Kratz et al. [83]. We show how to
improve the accuracy of the proposed algorithm. Furthermore, we argue that
this approach is suitable when investigating finger orientation in the early design
stages, as the depth camera can turn any surface into a finger orientation aware
surface. Second, we improve an approach first proposed by Xiao et al. [188]
in which they use capacitive images to estimate the finger orientation directly
from the touchscreen. This approach, in contrast, to the depth-camera approach
keeps the form factor identical to a off-the-self device. Finally, we discuss the
advantages of both approaches.

Parts of this chapter are based on the following publications:

S. Mayer, M. Mayer, and N. Henze. “Feasibility Analysis of Detecting the Finger Orientation
with Depth Cameras.” In: Proceedings of the 19th International Conference on Human-
Computer Interaction with Mobile Devices and Services Adjunct. MobileHCI’17. New York,
NY, USA: ACM, 2017, 82:1–82:8. ISBN: 978-1-4503-5075-4. DOI: 10.1145/3098279.
3122125
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S. Mayer, H. V. Le, and N. Henze. “Estimating the Finger Orientation on Capacitive
Touchscreens Using Convolutional Neural Networks.” In: Proceedings of the 2017 ACM
International Conference on Interactive Surfaces and Spaces. ISS ’17. Brighton, United
Kingdom: ACM, 2017, pp. 220–229. ISBN: 978-1-4503-4691-7. DOI: 10.1145/3132272.
3134130

3.1 Challenges in Recognizing Finger Orientation

Over the last years, touchscreen input evolved to the main mechanism for mobile
devices. Through direct touch, users can intuitively interact with the GUI. GUI
elements can simply be selected by touching them. Recent capacitive touchscreens
sense touch input by measuring a change in capacitance when a finger touches the
display. These measurements are translated into a 2D point by the touchscreen
controller. Since the measured capacitance is omitted afterward, touchscreen
input is limited to 2D input.

Commercial devices, as well as previous research, presented a wide range of
novel interaction techniques. Already in the first version of Android and iOS, they
leveraged the time dimension to provide the long press. With the iOS 6s in 2015,
Apple introduced 3D Touch which adds a pressure dimension the interaction.
Both methods are used to modify the touch input and alter the action. Roudaut
et al. [151] presented a technique to use the roll of the finger to scroll through
lists. Xiao et al. [188] and Zaliva [189] proposed using the finger orientation to
increase the richness of the touch input. A larger input vocabulary enables a richer
interaction and thereby enables new ways to manipulate potential applications.

3.2 Depth Camera Approach

In the following, we improve approach by Krazer et al. [83] who used a depth-
camera over the touch surface to determine the finger orientation. We first, built a
prototype to recreate the original setup using new components. We than measured
the accuracy of the prototype with the algorithm by Krazer et al. [83]. We found
a systematic error in the original approach which we reduce by using offset-shift
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models for both pitch and yaw orientation. Finally, we discuss potential use cases
and argue that the depth-camera approach while being bulky has its advantages in
the early prototyping stages.

3.2.1 Prototype

For our prototype, shown in Figure 3.3, we use a Samsung Galaxy Tab Pro 8.4
which offers 2560× 1600px on an 8.4-inch screen resulting in 359.39PPI. As
a depth camera, we use an Intel RealSense F200. The camera has a minimum
sensing distance of 20cm and a resolution of 640× 480px at 120FPS. We use
the RealSense F200 due to its small minimum distance in comparison to other
available depth sensors. However, we needed to overcome the 20cm between the
tablets screen and the depth sensor. Therefore, we 3D printed a mount for the
tablet and laser cutted a connection plate to attach the camera to the tablet. We
firmly connected the parts using metal screws.

3.2.2 Study

To evaluate the accuracy of our setup with the algorithm proposed by Kratz
et al. [83] we collected ground-truth data by conducting an experiment. The
ground-truth was determined by three RGB cameras to always get a clear view.

3.2.2.1 Apparatus

We recorded the ground-truth data using three RBG cameras which we fixed on
a wooden frame. We mounted one camera on top of the tablet, one on the left
and one on the right (see Figure 3.2). The top camera was used to determine the
fingers yaw while the left and right were used to determine the fingers pitch. We
needed two cameras to determine pitch because when we insert extreme yaw angle
one camera was always covered by the rest of the hand. We used three Microsoft
Lifecam HD 3000 which recorded with 1280×720px at 3FPS. We replaced the
flexible parts of the original camera mount with a non-flexible plastic connector
(see Figure 3.2). The three camera streams were used to later determine the
finger orientation through a manual labeling process. We developed an Android
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Figure 3.1: The study app is showing instructions to perform a 30◦ yaw input at one

specific position.

application, which displays red crosshairs indicating the touch position. The
crosshair further indicated which finger yaw angle the participant should perform,
see Figure 3.1.

3.2.2.2 Design and Task

We designed the study using a repeated-measures design with four independent
variables: TARGETS, YAW, PITCH, and FINGER. We randomized the order of
FINGER, and within FINGER we randomized TARGETS, and YAW. To cover a
broad range of possible positions, we used 20 TARGETS arranged in a 4×5 grid
on the tablet. The targets further represented five PITCH input angles: 15◦, 30◦,
45◦, 60◦, and 75◦. Xiao et al. [188] found that a pitch of 90◦ cannot be detected
with long nails. Thus we did not investigate angles steeper than 75◦. Further,
we used five YAW input angles: −60◦, −30◦, 0◦, 30◦, and 60◦. As we present
in Chapter 4 the comfort zone of yaw input for the right hand is ranging from
−33.75◦ to 101.25◦. To not stress the participates too much we limited the range
to −60◦ and to built a symmetric model to 60◦ on the other extreme. Further, all
tasks were performed with four FINGERS: index, middle, ring and little finger.
Thus, we had a design with 20×5×5×4 = 2,000 conditions.
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Figure 3.2: The wooden frame with the attached web cameras which we used for

ground truth recording in our study.

Performing a specific pitch angle is not easy. To overcome this challenge Xiao
et al. [188] used laser cutted stabilizers which they placed below the participants’
finger. However, this is not possible using the camera based approach, as the
stabilizers would influence the depth image. Thus we decided to let participants
perform a movement and determine the PITCH angle in the post processing.
Therefore we asked half of the participants to start with a pitch close to 0◦ and
then change the pitch of the finger up to a steep angle close to 90◦. The other half
was asked to move from 90◦ down to 0◦ pitch. We specified these two movements
to reduce an effect of the finger moving only in one direction.

3.2.2.3 Procedure

First, we welcomed our participants and informed them about the procedure of
the study. Second, we asked them to fill in a consent form and a questionnaire
with demographic data. Afterward, the experimenter marked each finger with two
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Figure 3.3: A participant while performing the task.

red dots on the left and right side as well as on top of the finger to later determine
the finger orientation. Then, we explained to the participants that they have to
touch the center of the red crosshair while aligning the finger with the longer red
line indicating the yaw angle. Afterward, we asked participants to move the finger
slowly up or down to input several pitch angles (see Figure 3.3).

3.2.2.4 Participants

We recruited participants from an internal university self-volunteer pool. We
recruited 12 participants (9 male, and 3 female) which were aged between 22 and
35 (M = 25.83, SD = 3.31). All participants used their right hand. We reimbursed
them with 5e for their participation.

3.2.3 Results

First, we corrected the camera lens distortion for the three recorded RGB-camera
streams. Second, we manually labeled the finger posture with the help of the red
markers on the finger for each of the five PITCH angles. Due to the continuous
change of the pitch angle, we were able to label accurate PITCH angles. However,
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(a) Index finger (b) Middle finger

(c) Ring finger (d) Little finger

Figure 3.4: The scatter plots are showing the points where we gained data samples

from the study. The underlining plane represents the correction model for the pitch

correction based on pitch and yaw of the depth camera.

for the YAW angles, we were bound to the participants’ accuracy (M = 3.1◦, SD
= 9.9◦). For the modeling, we used the yaw angles actually performed by the
participants, not the initial categories.

Using the depth images, we determined the pitch and yaw with the PointPose
algorithm [83]. Due to the manual labeling and noise in the depth data, we
removed outliers where the distance between ground-truth and predicted angles
is more than two standard deviations away from the average. This was done for
pitch and yaw individually. In total, we removed 8.2% of the data. Then, we
calculated the root mean squared error (RMSE) for each finger, see Table 3.1.
The average RMSE is 15.4◦ for pitch and 12.2◦ for yaw.
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The PointPose algorithm [83] was evaluated regarding precession over time.
The evaluation of Kratz et al. [83] used an alignment task where the target was
presented and the participant had to move a cursor to overlap with the target.
Whereby the cursor could be manipulated through either pitch or yaw input.
Accuracy was determined by measuring the variation of a 7.5 sec recording where
the participants had to hold the alignment.

Comparing our results with the results reported by Kratz et al. [83] is not
trivial because Kratz et al. averaged over 7.5 sec whereby we used a concrete error
not the variance while holding the finger. Further, Kratz et al. [83] used 7 steps
for yaw ranging from −30◦ to 30◦ and 5 steps for pitch ranging from 50◦ to 75◦.
On average they reported a change in variation of M =−.92◦ (SD = 6.36◦) for
pitch and M =−2.52◦ (SD = 14.67◦) for yaw.

3.2.3.1 Modelling

In the following, we present our model to reduce the error through offset correc-
tion. We modeled the offset with a full second order two-dimensional polynomial,
as in Equation 3.1. We choose Equation 3.1 after a one-dimensional polynomial
fitted less accurate and the visual inspection suggested a more complex underlying
behavior. Furthermore, a more complex function led to overfitting. The pitch
and yaw offset corrections are modeled independently from each other. Thus, we
fitted 8 functions, 4 fingers × 2 degrees of orientation (pitch/yaw). However, the
correction model for pitch and yaw is based on both pitch and yaw angles gained

Table 3.1: The RMSE and standard division for pitch and yaw per finger.

Pitch Yaw

RMSE M SD RMSE M SD

Index 15.7 −10.8 11.4 11.9 2.8 11.7
Middle 17. −10.5 13.4 14.7 3.4 14.3
Ring 13.8 −7.4 11.7 11.2 3.5 10.7
Little 14.8 −9.8 11.1 10.8 3. 10.4

Mean 15.4 9.6 11.9 12.2 3.2 11.8
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(a) Index finger (b) Middle finger

(c) Ring finger (d) Little finger

Figure 3.5: The scatter plots are showing the points where we gained data samples

from the study. The underlining plane represents the correction model for the yaw

correction based on pitch and yaw of the depth camera.

from the depth camera as the α and β input for the Equation (3.1). Whereby we
used the predicted angles by the depth camera for α and β , results are shown in
Figure 3.4 for the pitch correction and in Figure 3.5 for the yaw correction. We
validated the improvements for all functions by the use of leave-3-participants-out
cross-validation, which is a split of 75% : 25% for train and test.

f (α,β ) = aα
2 +bβ

2 + cαβ +dα + eβ + f (3.1)

For the pitch correction, we achieved an average reduction of the RMSE
of 41.7%, all results are listed in Table 3.2. The overall remaining pitch error
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improved from M =−9.6◦ without correction model to M =−.9◦ with correction
model. For the yaw correction, we achieved an average reduction of the RMSE
of 14.7%, all results are listed in Table 3.2. The overall remaining yaw error
improved from M = 3.2◦ without correction model to M = .2◦ with correction
model.

For the final model we used the training and test data to fit the model, we
achieved an RMSE reduction by 45.4% for pitch and 21.83% for yaw. Further
the fitness of the pitch correction functions for the four fingers functions is
R2 = [.50 .45 .49 .54] (see Figure 3.4), and for the four yaw functions the fitness
is R2 = [.63 .58 .67 .76] (see Figure 3.5).

3.2.4 Discussion and Implications

In a first step, we recorded ground truth data pitch and yaw to determine the
accuracy of PointPose. In a second step, we applied offset models to correct the
mean error of the PointPose method.

We showed that the root mean squared error without correction is 11.75◦ for
pitch. This results in an offset of 13.1% of the possible pitch input range which is
from 0◦ to 90◦. Further, in our study, we explored the yaw range between −60◦

and 60◦ resulting in an RMSE of 8.74◦ and an average offset of 7.3%. Thus high
precision input is not possible with the proposed method. Even for imprecise
input, we see a lack of feasibility to use this method.

We also show that the predicted results are more accurate close to the center
of the observed input space (pitch = 70◦ and yaw = 0◦), see Figures 3.4 and 3.5.

Table 3.2: The reduction of RMSE when applying the correction models to pitch and

yaw.

Pitch in % Yaw in %

Index finger 41.8 15.2
Middle finger 43. 16.5
Ring finger 40.4 13.9
Little finger 41.5 13.2

Mean 41.7 14.7
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For the pitch correction, we can see an overall trend of a larger pitch error with
yaw values away from the center. Further, we can observe that this is radially
symmetric (see Figure 3.4). Also for the yaw correction, we see an overall drift
in the mean data (see Figure 3.5). To correct the drift and improve the predicted
accuracy, we applied one offset model per pitch/yaw and finger and thereby
reduction of RMSE for pitch by 45.4%, and for yaw by 21.83%.

When comparing our results with correction and the results reported by Xiao
et al. [188], we achieve a similar pitch error and smaller yaw error. Their method
leads to a pitch error of 9.7◦ while our method achieved 11.75◦. For the yaw error,
Xiao et al. [188] reported 26.8◦ while our method achieved a three times smaller
yaw error of 8.74◦.

We used the tablet to display targets, not for the actual recognition nor the
model. Thus, the touch position was not taken into account in the analysis nor
the offset correction. Doing so allows using the depth camera also without a
tablet. Thus, mounting the depth camera onto a not touch sensitive surface is
possible; this can be useful for system prototyping when building a first fully
functional apparatus. We envision using our approach even in earlier stages e.g.
when designing new GUI interfaces using paper prototypes. Here, the behavior
of the finger orientation can be observed, and the GUI can be designed adaptive
to the input.

3.3 Capacitive Sensor Approach

Previous work proposed algorithms to determine pitch and yaw to use them as
an additional input modality. However, determining a finger’s orientation using
off-the-shelf devices and existing algorithms is still not precise [188]. Due to
the high potential of using finger orientation as an additional input, we aim to
improve the algorithms proposed by previous work. In this Section, we present a
range of machine learning models to estimate the fingers’ pitch and yaw angle.

In the following sections, we then present the details of our study design and
the data set we collected in our experiment. Next, we interpret and discuss the
implications of the data obtained. Finally, we present how we built our new finger
orientation estimation using machine learning.
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Figure 3.6: The study setup showing the Nexus 5 and the aluminum profiles where the

cameras are firmly mounted to.

3.3.1 Study

In this study, we collect capacitive images and respective finger orientation angles
as ground truth using a motion capture system. We followed the approach by
Holz and Baudisch [69] to collect ground truth data of the finger orientation.
Specifically, a finger orientation consists of a pitch angle and a yaw angle. We
define pitch as the angle between the finger and the horizontal touch surface. The
pitch is 0◦ when the finger is parallel to the touch surface, i.e., the entire finger
touches the surface. The yaw angle represents the angle between the finger and
the vertical axis. Yaw is 0◦ when the finger is parallel to the long edge of the
phone and increases when the finger is rotated counterclockwise.
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3.3.1.1 Apparatus

The apparatus, shown in Figure 3.6, includes an LG Nexus 5 smartphone, eight
OptiTrack Prime 13W motion capture cameras, and one PC to operate the Opti-
Track. We modified the Android kernel of the LG Nexus 5 as described by Le et
al. [93] to gain access to the capacitive images. Using our Android application,
we recorded the 15×27 pixel images at 20FPS as well as the respective 2D touch
point provided by the Android SDK. While recording, the Android application
instructs participants to touch on a red 2×2cm crosshair as shown in Figure 3.7.
To further record the respective 3D finger orientation in relation to the orientation
of the smartphone, we attached a rigid body with 3 markers each onto the partici-
pant’s index finger and the smartphone. This enables the motion capture system
to reconstruct the pitch and yaw angle of the finger, and record them at 240FPS.
Based on this information, the experimenter could monitor all orientations that
were covered by the participants live on the PC.

3.3.1.2 Design and Task

The experiment consists out of two phases, the tapping phase in which participants
tapped the screen repeatedly, and the moving phase in which participants altered
the finger tip without removing the finger from the screen. Since the resolution of
the capacitive image is low, we hypothesized that the blob representing the finger
could look different depending on whether the touch is performed in the center of
a pixel, or on the pixel borders. Thus, touches in each phase were performed on a
pixel center and on pixel borders, which was represented by the red cross-hair. In
total, this results in 2×2 tasks which are counterbalanced using a Latin square.

3.3.1.3 Procedure

After signing the consent form and filling out a demographic questionnaire,
we attached the reflective rigid body markers to the participant’s index finger.
Participants were then instructed to touch the display with their index finger,
while slowly altering the pitch and yaw angle of the finger. In the moving phase,
they were instructed not to remove the finger while altering the orientation. In
the tapping phase, they were instructed to alter the orientation when touching
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Figure 3.7: A close up of a participants hand while performing the study. On the

participants index finger we attacked the ridget body to track the finger orientation.

the screen, then lift off the finger and repeat the procedure. This were done
until the experimenter confirms that all angles between 0◦ and 90◦ for pitch and
−90◦ to 90◦ degrees for yaw was covered. A degree counts as covered when at
least 20 capacitive images for that degree were recorded. Using the live monitor
application, the experimenter instructed the participants to cover all angles and
ensured that the recordings were complete.

3.3.1.4 Participants

We recruited 35 participants (28 male, and 7 female) through our university’s
mailing list. Due to technical issues we excluded two participants. For the
remaining 33 participant (26 male, and 7 female) the age ranged from 20 to
33 years (M = 22.9, SD = 3.4). All of them had either no visual impairment or
corrected to normal vision. None of the participants had any locomotor disabilities.
Further, all participants were right handed. Only participants with short fingernails
were invited to participate, as this was stated to be an issue by Xiao et al. [188].
Therefore participants were able to cover the full pitch range from 0◦ and 90◦.
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Figure 3.8: The blue counts are representing the distribution of pitch samples which

we used for the modeling. The yellow area represents the distribution of pitch samples

we recorded in our study. The are in between in obtained by flipping the yaw data.

3.3.2 Modeling

In a pre-processing step, we mapped the capacitive data record on the phone with
the OptiTack recorded on the PC. As the capacitive images are recorded at 20FPS,
and the OptiTack samples are recorded at 240FPS, we used the closest OptiTack
sample for each capacitive image. This resulted in an average offset of 25µsec
(SD = 162µsec).

As the first step, we removed all samples from the tapping condition. The
sampling rate 20FPS did often only capture the finger while moving but not the
finger fully touching the touchscreen. As the second step, we followed Xiao et
al. [188] and filtered noise below 3pF (picofarad). The sample distribution is
shown in Figure 3.9 for yaw and the pitch distribution in Figure 3.8. Results in
Chapter 4 show that yaw input beyond −33.75◦ falls into a non-comfort zone, we
recorded fewer samples towards yaw =−90◦. To compensate for this effect, we
added vertically flipped versions of all initial capacitive images to our data set to
balance the yaw samples. We then performed a blob detection on the capacitive
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Figure 3.9: The blue counts are representing the distribution of yaw samples which we

used for the modeling. The yellow area represents the distribution of yaw samples we

recorded in our study. The area in between in obtained by flipping the yaw data.

images; the biggest blob was 15×22. We cropped all blobs and pasted the blobs
into the upper left corner of an empty 15×22 image (referred to as blob image).
The blob detection omitted all blobs that were not greater than one pixel of the
image (4.1× 4.1mm) as these can be considered as the noise of the capacitive
touchscreen. We used the pixel values of the blob images as input features for the
model. In total, our data set consists of 457,268 blob images.

For all models, we derived training and test sets using an 80% : 20% split by
participants respectively. As we had 33 participants in total, we split them into the
train and test set. The first 26 participants were used for training, and remaining 7
participants were used for testing. For all models, we used an optimizer function
to reduce the root mean squared error (RMSE).

3.3.2.1 Feature-Based Approach

The recent feature-based approach by Xiao et al. [188] uses 42 features extracted
from the capacitive image to estimate the pitch and yaw angle. For the pitch angle,
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they used a GP regression. We reimplemented these 42 features. However, when
feeding them to the GP, we hit the limits of GP due to a training time of O(n3)

and memory scaling of O(n2) [89]. Since Xiao et al. recorded 1,224 samples to
train their model, a GP regression worked for their in comparatively small data set
to estimate pitch. However, with our data set, which is 373 times larger, training
GPs on the full data set is not feasible anymore.

To train a GP we used a subset of our data set. To not vary the number of
reference points, we used only samples which have the properties of the original
implementation, pitch: 0◦ to 90◦ in 15◦ steps and yaw: −60◦ to 60◦ in 15◦

steps. Since no pitch = 0◦ samples have been recorded in our study the following
comparison is not validated for 0◦ pitch. Further, we used ±1◦ for pitch and yaw
to create a data set to implement the approach presented by Xiao et al. [188].
This resulted in a 4,977 samples large data set. We divided the data set in a
train- and a test- data set. For each reference point, 75% are used for training and
25% for testing. This ensured that each original reference point was trained and
tested, resulting in 3,711 training samples and 1,266 test samples. As Xiao et
al. [188] did not report how many trainings samples they recorded, we can not
ensure the same size. However, they reported that the test set contained 1,224
samples, which is roughly the amount we use for testing. Due to the proprietary
implementation1, Xiao et al. [188] did not report which kernel or parameters they
used. Thus we used the trial-and-error method [23] combined with a grid search
to find parameters for the GP reimplementation of Xiao et al. [188]. To train our
reimplemented GP, we used scikit-learn2.

To make use of the rich data set we collected, we additionally decided to
also test apseudo-implementation of the approach by Xiao et al. [188]. We use a
simple k-nearest neighbor (kNN) approach as well as a DNN approach. For yaw
Xiao et al. used the ellipsoid of the blob with a 90◦ correction when the pitch is
larger than 50◦.

1http://qeexo.com/
2We used the Gaussian process (GP) version available in the python package scikit-learn:

http://scikit-learn.org/stable/modules/gaussian_process.html
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Figure 3.10: The remaining pitch MAE when using out CNN + L2 model. The gray

area shows the 95% CI.

3.3.2.2 Pitch Estimation Using Features

For the GP reimplementation of Xiao et al. [188] using their 42 features we
found that a RationalQuadratic1 kernel performed best with Alpha = .01 and
LengthScale = 100.

For the pseudo implementation we replaced the GP with a kNN, and a DNN.
(1) For the kNN estimation approach using the features by Xiao et al. we achieved
the best results using k = 129. We used a change RMSE smaller than ε = .001 as
a stopping criteria. (2) For the DNN we used a two ReLu [136] layer structure
with 100 and 50 neurons respectively. To train our model we used an Adagrad
Optimizer [28] with an exponential decaying learning rate (LearningRate = .01
and DecayRate = .2). We initialized the weights using the Xavier initialization
scheme [42] while the biases were initialized with .01.

1http://scikit-learn.org/stable/modules/generated/sklearn.gaussian_

process.kernels.RationalQuadratic.html
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Figure 3.11: The remaining yaw error when using out CNN + L2 model. The gray area

shows the 95% CI.

3.3.2.3 Yaw Estimation Using Features

For the GP reimplementation we used the S1 ellipsoid feature with the heuristic
described by Xiao et al. [188] to estimate yaw.

The simple heuristic is based on the estimated pitch however we also want to
take full advantage of the large data set. Thus, for the pseudo implementation we
used the simple heuristic using S1 ellipsoid feature as well a kNN and a RF model
for the yaw estimation. We performed a grid search for kNN and RF. We again
used an ε = .001 as an early stopping in RMSE change. For kNN, the best results
were achieved with a k = 109 while Estimators = 79 performed the best for RF .

3.3.2.4 Representation Learning Approaches

We propose a new way to determine the pitch and yaw of the touching finger.
This method uses DNNs with the raw capacitive blob values as input also known
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as representation learning [3]. Thus we first applied a blob detection to identify
the touching finger and then directly feed the 15×22 sized blob into the DNN to
estimate the pitch and the yaw of the finger.

Beyond the feature-based baseline, we implemented two baselines that use
the raw pixels of the blob to estimate pitch and yaw. Therefore, we trained kNN
and RF models to estimate pitch and yaw independent from each other. We used
the implementations of scikit-learn1.

We implemented a neural network for regressing using TensorFlow2 and
tested different network configurations by varying the amount of neurons and
layers, activation functions, and optimizers provided by TensorFlow. We trained
6 different neural network structures: two DNNs one for pitch and one for yaw
and one DNN and three CNNs which estimate pitch and yaw at the same time.
Further, we used early stopping to prevent overfitting for all neural networks [15].
TensorFlow has a large amount of parameter for their functions if the parameter
is not reported in the following section we used the standard parameter of Tensor-
Flow version 1.2.1. We applied the trial-and-error method [23] to find the best
parameters for our models.

k-nearest neighbor (kNN): We started using kNN regression as a baseline
estimation for pitch and yaw interdependently. We performed a grid search
to identify the best k for the two models. For pitch, we found that k = 180
for pitch and k = 278 for yaw performed best.

Random Forest (RF): As a more advanced model than kNN, we used two
RFs as a second baseline to estimate pitch and yaw interdependently. We
performed a grid search to identify the best i number of trees in the forest
for the two models. For pitch, we found that i = 85 for pitch and i = 17 for
yaw performed best.

Deep Neural Network (DNN): We used two DNNs, one to estimate pitch and
one for yaw. We achieved the best results using a 3-layer DNN. We used
a ReLu-ReLu-Sigmoid structure, with 500, 300, 200 neurons respectively.
To train our model, we used an AdaGrad Optimizer [28] with a exponential

1The scikit-learn package version v0.19.0: http://scikit-learn.org
2TensorFlow is an open source software library for machine learning which allows easy

deployment on various platforms e.g., CPS and GPU. http://tensorflow.org
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Max-pooling is used with a Stride of 2 and pedding is set to same. The dense layers

use a softplus activation function (softplus(x) = log(1+exp(x))).

decay learning rate (LearningRate = .01 and DecayRate = .2). We initial-
ized our weights using Xavier initialization scheme [42] while the biases
were initialized with .01.

Combined DNN: For a DNN with 2 output neurons to estimate pitch and yaw at
the same time, we achieved the best results using a 3-layer DNN. As layers,
we used a ReLu-Relu-Sigmoid structure, with 1200, 800, and 400 neurons
respectively. We initialized the weights using the Xavier initialization
scheme [42] while the biases were initialized with .01. As optimizer we
used a Adagrad Optimizer [28] combined with a exponential decay learning
rate (LearningRate = .01 and DecayRate = .2).

Convolutional Neural Network (CNN): Next, we used a CNN with 2 output
neurons to also estimate pitch and yaw at the same time. As CNNs are
designed for image-like data, this was the next obvious step for us. We
used 3 convolution layer each with 2× 2 max-pooling and a ReLu acti-
vation function. All convolutional layers have a filter size of 7× 7 and
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32, 72 and 160 filter banks respectively for the three layer, followed by 2
fully connected layers (FCLs). The first FCL uses a softplus1 activation
function. We used 2000 output neurons for the first FCL and initialized
the weights using Xavier initialization scheme [42] while the biases were
initialized with .01. As optimizer we used a Momentum Optimizer [145]
using a momentum of .9 combined with a exponential decay learning rate
(LearningRate = .02 and DecayRate = .1).

CNN + L2: To improve our first CNN, we applied L2 Regularization [6]. An
L2 Regularization of .015 for the two FCLs performed best with an extra
change in the network structure. We changed the filter size from 7×7 of
all convolutional layers in comparison to the previous model to 6×6 as is
yield better accuracy, see Figure 3.12 for a model structure.

CNN + L2 + BatchNorm: In the last model we added batch normalization [75]
to CNN model with L2 Regularization. We used the same structure as
the CNN with L2 Regularization model with enabled scale as well as an
optimizer, exponential decay learning rate, and L2 Regularization.

3.3.3 Results

All results of our 2 baseline approaches (kNN and RF), 5 Neural Network (NN)
approaches as well as the results of the best estimation for reimplementation
and pseudo implementation using the features proposed by Xiao et al. [188] are
presented in Table 3.3.

3.3.3.1 Feature-Based Approaches

We used a subset of our data set to train and test the reimplementation due to the
limitations of GPs and the full data sat for the pseudo implementation.

1The softplus function is defined as softplus(x) = log(1+ exp(x))

60 3 | Recognition



Pitch Yaw Overall

Method RMSE MAE SD RMSE MAE SD RMSE

GP reimple-
mentation of
Xiao et al.
[188]*

14.74 11.78 14.38 56.58 40.51 39.51 −

pseudo
implementa-
tion of Xiao
et al. [188]∗∗

14.19 11.58 8.21 44.53 33.39 29.46 −

kNN 13.96 11.25 8.27 33.07 23.06 23.7 −
RF 12.99 10.24 7.99 28.55 20.89 19.46 −
DNN 13.05 10.25 8.07 27.10 19.53 18.79 −
Combined
DNN

13.44 10.71 8.13 26.98 19.51 18.4 29.74

CNN 12.80 10.03 7.96 24.5 17.6 17.04 27.43
CNN + L2 12.8 10.09 7.88 24.19 17.62 16.58 27.16
CNN + L2 +
BatchNorm

12.75 9.99 7.92 24.48 18.33 16.24 27.59

Table 3.3: The best results for all tested estimation models. Errors are reported in

angular degree error. ∗) These results have been achieved with a small subset of the

original data set (1.4%). ∗∗) For the reported values we used a DNN instated of a GP

regression for the pitch estimation as the data set was to big for a GP.

3.3.3.2 Reimplementation

For the reimplementation we achieved a RMSE of 14.74◦ (MAE = 11.78◦, SD =

14.38◦) for pitch usning a GP and a RMSE of 56.58◦ (MAE = 40.51◦, SD =

39.51◦) for yaw using the simple heuristic.

3.3.3.3 Pseudo implementation

For the pseudo implementation we achieved a RMSE of 16.14◦ (MAE = 13.2◦,
SD = 9.28◦) using kNN. The DNN estimator using features, which replaced the
original GP, achieved a RMSE of 14.19◦. Thus, the DNN using the features by
Xiao et al. [188] outperforms the kNN with features by 13.7%.
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The simple heuristic to estimate the yaw of the finger proposed by Xiao et
al. [188] achieved a RMSE of 44.53◦. Further, we achieved a RMSE of 31.77◦

(MAE = 22.96◦, SD = 21.96◦) when we use a kNN as an estimator. And a RF
model achieved a RMSE of 31.75◦ (MAE = 22.95◦, SD = 21.94◦). Thus our
baseline comparisons using kNN and RF both performed better than the simple
heuristic by 28.7%.

3.3.3.4 Representation Learning Approaches

Next, we again used kNN and RF as a baseline estimator. However, now we are
using the raw blob values. For the kNN baseline, we achieved a remaining RMSE
of 13.96◦ for pitch and 33.07◦ for yaw. For the Random Forest (RF) baseline, we
achieved a remaining RMSE of 12.99◦ for pitch and 28.5◦ for yaw. The RF using
the raw blob outperforms the simple heuristic using features by 8.5% for pitch
and by 36.% for yaw.

With our first with two separate DNNs, one for pitch and one for yaw, we
achieved a RMSE of 13.05◦ for pitch and 27.10◦ for yaw. We further achieved
similar results when using a DNN to predict pitch and yaw at the same time this
resulted in an overall RMSE of 29.74◦.

Then we used three different types of CNN. A simple CNN outperformed the
DNN by 7.8%. We further were able to reduce the RMSE to 27.16◦ when using a
CNN with L2 Regularization. However, when applying batch normalization to
the previous model, the overall result dropped to a RMSE of 27.59◦.

Thus the estimator with CNN and L2 Regularization performed best with
an overall RMSE error of 27.16◦. The error distribution for pitch is shown in
Figure 3.10 and for yaw in Figure 3.11.

3.3.4 Discussion

In this work, we collected a data set automatically labeled by a motion capture
system. In total, we used 457,268 labeled samples to train our models. However,
Figures 3.8 and 3.9 indicate an unequal distribution for pitch and yaw samples.
The results we will present in Chapter 4 indicate that performing low pitch angles
can be hard even in the yaw range observed in this section. Further, particapnts
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stated that performing yaw angles outside of the range −33.75◦ to 101.25◦ is
significantly harder for right-handed people than performing yaw angles within
the range. Since we had 31 right-handed participants, this explains the unequal
sample distribution for the yaw samples.

Using our labeled data set, we evaluated the feature-based approach for the
GP reimplementation as well as the pseudo implementation, and further presented
multiple models including two baseline approaches (k-nearest neighbor (kNN) and
Random Forest (RF)), and five different Neural Networks (NNs). In contrast to
Xiao et al. [188], we used the raw capacitive image instead of feature engineering.
Even the two baseline approaches using representation learning yield a lower
estimation error than the two feature-based approachs.

In contrast to all other models, we trained the GP reimplementation with a
subset of the data set which makes a real comparison hard. However, the RMSE
for the GP pitch estimator is in the same range of the other models. On the other
hand, the SD is 175% larger than the second worst pitch SD. Further, the simple
heuristic for yaw performed worth for the GP reimplementation throughout all
other yaw estimations. Additionally, the SD is the highest which is 134% larger
than the second worst yaw SD.

A comparison of our results with the pseudo implementation of Xiao et
al. [188] revealed that the pseudo implementation of the feature-based approach
performed worse by 16.2% for pitch and 19.7% for yaw. Since our data set
consists out of 457,268 labeled samples, we have a large variance compared to
their data set which consists of only 1,224 test samples. Further, they trained and
evaluated their model in 15◦ steps while our model was trained and evaluated on
a floating point level of precision. As shown in Figures 3.8 and 3.9, we cover the
full pitch (from 0◦ to 90◦ degrees) and yaw range (from −90◦ to 90◦) in 1◦ steps.

Both our baselines (kNN and RF) using the raw capacitive image outperformed
our implementations of the feature-based approach proposed by Xiao et al. [188].
Using five different NNs, we showed that we could further improve the estimation
accuracy. We started with two separate DNNs to predict pitch and yaw. We
achieved similar estimation results using one combined DNN. Eventually, we used
Convolutional Neural Networks (CNNs) to further improve the finger orientation
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estimation accuracy of the combined DNN by 7.8% in RMSE. Overall, we
reduced the pitch RMSE by 9.8% and the yaw RMSE by 45.7% in comparison to
the best feature-based approach.

While this is a step towards a precise estimation of the finger orientation, there
is still a remaining error in both pitch and yaw which could result in jitter. This
could limit the usability and restrict the usage of finger orientation to non-precise
input. One reason includes the limitation of the touch sensor. With a pixel size of
4.1×4.1mm, the capacitive image still has a low-resolution which restricts the
performance of the estimation. While we removed the majority of the touchscreen
noise, the remaining noise still affects the estimation precision negatively. This
could be improved by using a more precise high-resolution touch sensor. Further,
Williamson [179] showed that increasing the sensing range above the display
surface enables, for instance, to detect if two fingers belong to the same hand.
Hinckley et al. [65] used an increasing the sensing range to sense a finger before
the accentual touch and thereby enables new interaction techniques. Both enables
detection of the whole finger without actually touching the display which can
be used to model the finger shape and thus also orientation. This technology is
already available in commercial smartphones, such as the Samsung Galaxy S4
which has the Air View feature. A better sensing range was well as a higher
resolution could improve the accuracy.

One limitation of our current model is that it is only trained with samples
where the whole finger was captured by the touch sensor. Thus, we assume a
drop in accuracy when touching close to the screen edges where only a part of the
finger is visible. This should be investigated in further developments. Our data
set could be used to train models which take edge inputs into account by cropping
the images and thereby simulating edge inputs.

3.3.5 The Finger Orientation Data Set and Model

The data set collected in this section is freely available under a GPL license1 and
available on GitHub2. The data set contains the full capacitive image as well as

1https://gnu.org/licenses/gpl-3.0.en.html
2https:

//github.com/interactionlab/Capacitive-Finger-Orientation-Estimation
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the labels for pitch and for yaw which we automatically labeled using a motion
capture system. Further, we provide the scripts for prepossessing, training, and
testing on GitHub. The prepossessing scripts include the blob detections using
scikit-image’s implementation1 of find contours by Lorensen and Cline [109].
Training and testing scripts of the method using a CNN with L2 Regularization
are also published. Finally, the model which performs best is released together
with data set and code. The model can directly be deployed using TensorFlow
Mobile2 directly to mobile devices (Android and iOS) and prototyping platforms
such as the Raspberry Pi. The data is published in CSV files, and the code is
written in Python 3.6 using TensorFlow version 1.2.1. We later added a Keras
version of the final model for easier deployment. However, this was not used to
calculate the accuracies. The implementation is using the TensorFlow back end.

3.4 Summary

In this chapter, we presented approaches to answer RQ1: “How can finger orien-
tation be detected?” We presented two approaches which both can determine the
finger orientation when a finger touches a surface. Both approaches are comple-
mentary. While the depth camera approach is bulky, it can turn any flat surface
into a surface with finger orientation input. The capacitive sensor approach is
small; however, needs a specific sensor which allows to acquire the capacitive
images. Moreover, when comparing the performance of both approaches, they
perform similar in terms of pitch estimation. In contrast, the performance for yaw
is more accurate when using the depth camera approach. However, the Machine
Learing (ML) model of the capacitive sensor approach can be further improved
retraining the model with more data. Therefore, we argue that both approaches
are useful; however, in different scenarios. We see the depth camera approach out-
perform the other approach in prototyping scenarios while the capacitive sensor
approach has advantages when it comes to portability and in-the-wild evaluation
as well as consumer market mass-production.

1http://scikit-image.org/docs/dev/api/skimage.measure.html#skimage.

measure.find_contours
2https://www.tensorflow.org/mobile/
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4
Ergonomic Constraints

In this chapter, we investigate the ergonomic constraints when using finger orienta-
tion as additional input dimensions (RQ2). First, we study ergonomic constraints
in a static tabletop scenario to understand the fundamental constrains of one-
handed interaction. Second, we study ergonomic constraints in a two-handed
interaction scenario. Here, we aim to understand how humans counteract their
own ergonomic constraints by using both hands and arms to enable a wider range
of finger orientations. Our findings indicate that pitch and yaw do significantly
affect perceived feasibility to perform a touch action. Further, we found that there
is a subset of yaw angles at which users are comfortable performing touch actions,
the comfort zone. Outside of this zone is the non-comfort zone, where the touch
interaction is perceived to require significantly more effort.

Parts of this chapter are based on the following publications:

S. Mayer, P. Gad, K. Wolf, P. W. Woźniak, and N. Henze. “Understanding the Ergonomic
Constraints in Designing for Touch Surfaces.” In: Proceedings of the 19th International
Conference on Human-Computer Interaction with Mobile Devices and Services. Mo-
bileHCI ’17. Vienna, Austria: ACM, 2017, 33:1–33:9. ISBN: 978-1-4503-5075-4. DOI:
10.1145/3098279.3098537
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S. Mayer, H. V. Le, and N. Henze. “Designing Finger Orientation Input for Mobile Touch-
screens.” In: Proceedings of the 20th International Conference on Human-Computer
Interaction with Mobile Devices and Services. MobileHCI ’18. Barcelona, Spain: ACM,
2018, 29:1–29:9. ISBN: 978-1-4503-5898-9. DOI: 10.1145/3229434.3229444

4.1 Ergonomic Challenges for Finger Orientation

While previous work has suggested compelling ways to use the finger orientation
as input and technology that can sense the orientation is now available. However,
commercial systems do not yet use finger orientation as part of the interaction.
One reason is that the orientation of the finger is restricted by the physiological
constraints of the user’s hand. When a user touches a flat surface, there are
finger orientations in which touch is uncomfortable or even impossible to perform.
As not all finger orientations can be used for the input, it is essential to learn
about users’ restrictions when designing orientation-aware input techniques. We
propose readdressing the ergonomics of single-finger touch on interactive surfaces
by investigating how systems can effectively use different finger orientations. In
this chapter, we look closely at different finger orientations to understand the
limitations they impose on the touch action. We systematically vary pitch and
yaw configurations (see Figure 1.1) to determine which finger orientations are
optimal for touch interactions and when users find it feasible to perform the
touch action. To that end, we conducted a study where participants rated the
perceived feasibility of the touch action when the finger pitch and yaw were
varied independently. In a controlled experiment, we used pitch stabilizers to
test 4 pitch values and 16 equally spaced yaw angles. Our findings indicate that
pitch and yaw do significantly affect perceived feasibility to perform a touch
action. Further, we found that there is a subset of yaw angles at which users
are comfortable performing touch actions, the comfort zone. Outside of this
zone is the non-comfort zone, where the touch action is perceived to require
significantly more effort, and some touch actions were found to be impossible to
perform. Based on these results, we discuss design considerations for using finger
orientation input in future applications.
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Figure 4.1: The study apparatus with the 3D printed 55◦ pitch stabilizer and the 16

yaw positions drawn on the touch surface.

4.2 Static Scenario

In the following sections, we investigate the static scenario where the touch
surface is mounted flat in front of the user. Here, we present the details of our
study design and the results of the experiment. Next, we interpret and discuss the
implications of the data obtained. Finally, we present how our findings help to
design future applications.

4.2.1 Hypotheses

Our study investigates the ergonomics of approaching a touch point with different
finger orientations and is guided by the following three hypotheses:
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Hypothesis 1 (H1): Even though users often use their non-dominant hand, e.g.
in encumbered situations, users perceive touch actions performed with their
dominant HAND as more feasible. Users prefer operating devices with their
dominant hand, and we expected this will influence our results.

Hypothesis 2 (H2): Changes in finger PITCH would affect feasibility RATINGS.
We decided to explore this hypothesis as past work provided little evidence
on how pitch values affected input feasibility.

Hypothesis 3 (H3): The more the finger YAW would diverge from the direction
parallel to the user’s arm, the lower the feasibility RATING would be. We
noted that increased twist in the wrist was expected to decrease feasibility.
While verifying this hypothesis, we endeavored to identify how much
twist was allowed while still producing a feasibility RATING suitable for
designing interaction techniques.

4.2.2 Study

In our study, we systematically manipulated the finger pitch and yaw while
performing a touch action. To study our three hypotheses, we conducted the study
in a controlled environment with a number of constraints to ensure the validity of
the study. Our goal was to observe the touch action as an atomic task. Therefore,
we artificially restricted the participants’ finger posture to prevent them from
subconsciously adjusting their hand, which would result in a larger input range.
Moreover, movements of the participant’s body would have caused a larger input
range. Therefore, participants were not allowed to move either the apparatus or
their chair.

To investigate the effect of finger orientation on the feasibility of a touch
action, as an atomic task we explore the full potential input range. We used 4
pitch angles and 16 yaw angles, each with a step size of 22.5◦.

4.2.2.1 Study Design

In a repeated measures experiment, we asked participants to perform touch actions
with their index finger. We asked them to rate the feasibility of the touch action
resulting in the dependent variable RATING. Feasibility, in this context, was

70 4 | Ergonomic Constraints



Figure 4.2: The four pitch stabilizers we used in the study to limit PITCH to 77.5◦, 55◦,

32.5◦, and 10◦ presented from left to right.

defined as the effort required to perform the touch action. The experiment was
conducted with three independent variables: PITCH and YAW of the index finger,
as well as HAND. We used 10◦, 32.5◦, 55◦, and 77.5◦ for PITCH. We did not
investigate angles steeper than 77.5◦, due to findings by Xiao et al. [188] who
stated that a pitch of 90◦ cannot be detected and performed with long nails. For
YAW, we covered the full 360◦ range resulting in 0.0◦ to 337.5◦ with 22.5◦ steps.
All combinations were tested with the index finger of the right and the left HAND.
Thus, we used a PITCH×YAW×HAND = 4×16×2 study design resulting in
128 conditions.

4.2.2.2 Apparatus

Our apparatus design aimed to maximize the control over the independent vari-
ables. Xiao et al. [188] stated that it is difficult to reliably ensure that participants
can touch a screen with a particular pitch. In their study, Xiao et al. used laser-cut
plastic wedges to align the finger at a particular pitch. The wedges, however,
were removed during the recording process, which influenced the accuracy. To
ensure that participants perform the touch actions with a particular pitch, we used
3D-printed pitch stabilizers. We manufactured pitch stabilizers with a PITCH of
10◦, 32.5◦, 55◦, and 77.5◦ as presented in Figure 4.2. Participants had to place
the finger on the pitch stabilizer while performing a touch action. The four pitch
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stabilizers ensured that participants performed a touch action with a given pitch.
Further, the pitch stabilizers ensured that participants did not vary the roll of the
finger during touch acquisition.

We used a touch-sensitive sensor by Synaptics, to ensure that the participants
touched the surface. The touch layer was surrounded by a white plastic frame to
level the area around the touch layer (see Figure 4.3). This resulted in a flat surface
that enabled secure positioning the pitch stabilizer on the sensor. We marked the
center of the touch sensor with a permanent marker. We further marked the 16
input yaw angles with a line on the surface and wrote the angle next to the line
(see Figure 4.1). The touch sensor was fixed on a desk to ensure that participants
could not move it.

We employed a tablet to guide participants through the study. During the
study, an application running on the tablet showed the hand, the pitch, and the yaw
that should be used for the next trial. The application randomized the order of yaw
and pitch. Participants were asked to rate the feasibility of the performed touch
action with a slider control on a scale with 100 steps from “easy” to “hard”. Using
continuous rating scales that have a long history in psychophysical measurement
and enables a robust evaluation [167]. Further, we choose a slider with no ticks
as Matejka et al. [116] showed that ticks influence the distribution of the results.
Additionally, the application gave the opportunity to tick a checkbox indicating
that the input was not feasible. The checkbox enabled distinguishing between
very hard but possible and physically impossible touch actions.

4.2.2.3 Procedure

After welcoming participants, we explained the study and asked them to give
consent. We then asked them to take a seat in a chair which was aligned with the
center of the apparatus. We fixed the position of the chair and asked participants
to neither move the chair nor the touch layer of the apparatus during the study.
We further explained to them how to place and use the pitch stabilizer. After the
participants felt comfortable using the apparatus, we explained how to use the
rating scale and the tick box, that is if they could not perform the touch action
they should tick the box. Further, we explained that they should rate the effort
required to perform the touch action and then explained the labels on the scale
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Figure 4.3: The apparatus we used in our study, showing the tablet, the touch layer

and one of the pitch stabilizer while one participant touches the touch surface.

in detail. We explicitly mentioned that easy meant that little to no effort was
required to perform that touch action whereas hard described an action that was
near impossible to complete.

Next, we started the main part of the study. The tablet showed PITCH, YAW,
and HAND that should be performed next. Participants were asked to perform
the touch action in the center of the sensor (the center was marked as shown in
Figure 4.3) three times using the given PITCH, YAW, and HAND. We asked the
participants to slide the finger in the guiding rail provided by the stabilizer. At
the end of each condition, participants had to provide a feasibility RATING on
the slider control on the tablet. Participants first performed the touch actions
using all combinations of PITCH and YAW with one hand followed by the other
hand, with the order of HAND being counter-balanced. Within HAND, the PITCH

condition was randomized, and within the PITCH condition, the YAW condition
was randomized to avoid participants from changing the stabilizer often. After
the participants had performed all conditions, we thanked them for their volunteer
participation.
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Figure 4.4: The average feasibility RATING (from 0 = “easy” to 100 = “hard”) for the

different PITCH inputs.

4.2.2.4 Participants

We recruited participants from an internal university self-volunteer pool. 10 male
and 9 female participants agreed to take part in the study. These participants
were between 22 and 44 years old (M = 25.9, SD = 2.7). Of all participants 16
participants were right-handed, 3 left-handed and none of the participants were
ambidextrous. One of the right-handed participants did not follow the procedure
of the study. Therefore, we discarded the data collected from this participant.

4.2.3 Results

We collected 2304 ratings from 18 participants. Out of the 2304 rated condi-
tions, 485 (21.1%) were marked by the participants as not feasible to perform.
All inputs that the participants marked to be not feasible where considered to be
“hard” (100 points) for the analysis.
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We applied the Aligned Rank Transform (ART) [180] procedure to the feasible
RATINGS, using the ARTool toolkit1 to align and rank our data.

We conducted a three-way analysis of variance (ANOVA) to determine
whether the independent variables significantly influenced the perceived fea-
sibility of performing the touch action. Our analysis revealed significant main
effects for PITCH, YAW, and HAND on feasibility (F3,2176 = 5.413, p < .005;
F15,2176 = 196.194, p < .001.; F1,2176 = 22.701, p < .001, respectively). Fur-
ther, we found significant two-way interactions between PITCH × HAND and
YAW × HAND (F3,2176 = 3.027, p = .028; F15,2176 = 147.566, p < .001, respec-
tively). However, there was no significant two-way interaction between PITCH ×
YAW (F45,2176 = 1.179, p = .194). Lastly, we found a significant three-way inter-
action between PITCH, YAW, and HAND (F45,2176 = 2.361, p < .001). Figure 4.4
presents the distribution of feasibility RATINGS for all YAWS and both HANDS.
Consequently, we employed further comparisons to investigate how the different
variables influenced the results.

We calculated a Sine regression to predict the RATING based on YAW. We
found a regression equation with R2 = .991 for the right index finger and R2 =

.978 for the left index finger. The predicted RATING is equal to

RATING = 54.8−44.5sin(YAW+0.9) (4.1)

for the right hand and

RATING = 58.4+43.1sin(YAW−0.8) (4.2)

for the left hand with YAW in radians, see Figure 4.5.
Next, we investigated which YAW angles produced touch actions that are

perceived as impossible to perform. For the right index finger, the participants
stated 244 out of 1152 (21.2%) times that touch was not feasible using the given
orientation and 241 out of 1152 (20.9%) times for the left index finger. For the
right hand, 99.18% of trials that were perceived to be impossible fell into the
range from 112.5◦ to 315.0◦. In the case of the left hand, 100% of the impossible

1The Aligned Rank Transform (ART) tool by Wobbrock et al.
http://depts.washington.edu/madlab/proj/art/index.html
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Figure 4.5: The average feasibility RATING (from 0 = “easy” to 100 = “hard”) for the

different YAW inputs averaged over all PITCHes. The figure also shows the fitted sin
curve representing the RATINGS. The blue line indicates the threshold between comfort

and non-comfort zones.

trials were reported in the range from 45.0◦ to 247.5◦. Considering that the
RATING is harder to perform in some input zones, we defined a threshold of
40 to mark the range where the trail was rated as impossible from the rest, as
explained next. Consequently, we observed that the YAW space could be divided
into two zones, which we named the comfort and non-comfort zones, as shown in
Figure 4.6.

Table 4.1: One-way RM-ANOVAs to determine if the RATING is depended on PITCH

within zones and HAND.

Zone HAND df F p

comfort right 3, 428 9.385 <.001
comfort left 3, 428 9.436 <.001
non-comfort right 3, 716 9.539 <.001
non-comfort left 3, 716 6.049 <.001
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Further, we noted that for the right HAND, the comfort zone (M = 51.89,
SD = 36.65) was rated significantly different from the non-comfort zone (M =

62.95, SD = 36.29) by conducting a Welch Two Sample t-test (t900.61 =−4.98,
p < .001). This was confirmed for the left hand (comfort zone: M = 45.04, SD
= 36.69; non-comfort zone: M = 60.92, SD= 38.91) as well (t949.77 =−6.954,
p < .001). Therefore, we choose the threshold of 40 for the RATING to divide the
two zones.

The comfort zone for the right HAND ranges from 326.25◦ to 101.25◦ and
the comfort zone for the left HAND ranges from 258.75◦ to 33.75◦. Therefore
the span of both comfort zones is equal to 135.0◦ for both hands and two comfort
zones overlap by 67.5◦ Thus the non-comfort zones are 225.0◦ wide.

We used four one-way RM-ANOVAs to investigate whether PITCH signifi-
cantly affected the feasibility RATING in the two zones and HAND. As Table 4.1
shows, we found significant effects; the ratings are presented in Figure 4.4. Fur-
ther, we did the same for YAW; and results are presented in Table 4.2.

4.2.3.1 Left-handed Participants

We also analyzed the data produced by the 3 left-handed participants. We collected
384 ratings from 3 left-handed participants. Out of the 384 ratings, 50 (13.0%)
were rated not feasible. Figure 4.7 compares the average RATING for all YAW

conditions between left- and right-handed participants. The data suggests that
left-handed participants reported RATING similar to right-handed participants.
Thus this indicates that the findings are valid irrespective of the dominant hand.

Table 4.2: One-way RM-ANOVAs to determine if the RATING is depended on YAW

within zones and HAND.

Zone HAND df F p

comfort right 5, 426 6.439 <.001
comfort left 5, 426 8.505 <.001
non-comfort right 9, 710 55.513 <.001
non-comfort left 9, 710 49.397 <.001
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Figure 4.6: The bars represent how often a yaw angle was rated as not feasible to

perform.

4.2.4 Discussion

Our results show that finger orientation has a significant effect on the perceived
feasibility of touch actions. As expected, participants perceived actions performed
with the dominant HAND as more feasible than those performed with the non-
dominant hand. Thus, the result of the initial three-way ANOVA confirms H1.

Our analysis revealed a significant effect of PITCH on the feasibility RATING.
This indicates that the feasibility of performing touch actions is influenced by
finger PITCH confirming H2. This is in contrast to Wang and Ren [171] who
found no difference in accuracy between vertical and oblique touch. Furthermore,
the results indicate that flat angles are preferred when touching in the comfort zone
while steep angles are overall rated to be easier when operating in the non-comfort
zones. Owing to a significant requirement to twist the finger, higher ratings in
comfort zone to otherwise are understandable.

Further, our analysis revealed a significant effect of YAW on the feasibility
RATING. In particular, we found that the distribution of RATINGS can be approx-
imated by a sine curve. This shows that the perceived feasibility of the touch
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Figure 4.7: Comparison of HAND in respect to the handedness of the participants,

showing the average value per YAW.

action increases steeply while the finger diverts from the parallel-to-arm direction.
We also observed that most YAW values could render the touch action impossible
(as evidenced by the existence of comfort and non-comfort zones). Consequently,
the range within which yaw input is feasible is highly restricted and a larger YAW

results in decreased feasibility RATINGS which confirms H3.

4.2.5 Design Considerations

Here, we chart how our findings influence the design of future single-finger input
techniques for interactive surfaces in the form of five design considerations.

Avoid entering the non-comfort yaw zone: The non-comfort zones cover 225◦

out of 360◦ of the possible input space for both hands and are therefore
much larger than the comfort zones. The comfort and the non-comfort
zones significantly differ in perceived feasibility when touching a surface
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with different finger orientations. Consequently, future designs of input
techniques should not require the user to use orientations that fall into
the non-comfort zones. Requiring input in the non-comfort zone creates
a possibility for the task to be perceived as impossible. Thus, tasks like
widgets that require rotating with a single finger should be avoided at all
costs.

Range for effective yaw input depends on the hand: While many interactive
surfaces can detect from which angle the user’s hand is approaching, future
designs must take that into account while designing yaw gestures. The yaw
rotation possibilities depend on the hand used. If the interactive surface
cannot detect which hand is being used, yaw gestures should be limited
to the 45◦-wide overlap in the comfort zones of the left and right hands to
ensure that the gesture is feasible to perform with both hands.

Make use of pitch-based techniques for contextual features: We have shown
that touch at different pitch angles is perceived as varying in feasibility.
Previous work reported influence on accuracy. In contrast to yaw, the range
of feasible pitch input is the same for the left and the right hand. This
suggests that there is a design space for designing interactions based on
finger pitch for interactive surfaces. Similarly to touch pressure techniques
(e.g. Apple’s 3D Touch), finger pitch could be used to activate additional
functions such as contextual menus.

Make use of pitch-based techniques for modal interaction: As different pitch
angles can be perceived and differentiated well, using these for interaction
can affords different modes in touch-based reading devices like ebook
readers and tablets. For example, pitch based techniques could offer an
alternative mode (to time or pressure) when one needs to parse complex
textual data. Most common techniques for parsing text include note-taking
[48], annotating [49], and insight generation from these notes as a solo or
collaborative activity [50]. Varying the pitch angles can activate the mode
to highlight text, or annotate it with notes.

Use edges of the comfort zone for safety-critical input: Our results show that
the perceived feasibility rating rises as the finger divert from the parallel-
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to-arm direction. Future designs could exploit this observation by using
higher yaw angles for sensitive input. For example, when confirmation to
restore factory settings is required, the user could be asked to perform a
67.5◦ yaw rotation. While the task would still fall in the comfort zone (and
thus be feasible), it would require more effort than a single tap thus limiting
possible slips.

A combination of pitch and yaw can also be used to offer a second dimen-
sion to afford sharing or disclosure. For example, sharing digital notes has
been shown to improve performance in critical tasks [46, 185]. Setting the
mode for digital notes to be private or transparent for public consumption
could be done by varying pitch (simultaneously or in succession) with an an-
gular yaw movement. Further work is required to address the opportunities
and limitations resulting from this approach.

Explore the benefits of pitch when unsure about yaw: Our results show a
potential for future designs to use pitch input when yaw values may fall
outside of the comfort zone. This may be the case when multiple users use
a single touch device e.g. when collaboratively browsing photos on a tablet
lying on a table. Further, yaw is often limited when users are likely to use
one-handed input e.g. while shopping. Given that appropriate sensing is
available, pitch input may enable effective two-dimensional navigation even
when the finger approaches the touch surface at a yaw angle outside of the
comfort zone. Consequently, we suggest enabling pitch-based navigation
in scenarios when yaw-based techniques are possibly restricted.

4.2.6 Limitations

The study used a highly controlled setting, which ensured that neither the partic-
ipant nor the device was moved. Thus, our results can only be directly applied
for iteraction with to stationary devices. Allowing the user to move the device or
allowing the user to move around the device would increase the range of feasible
inputs, but would increase the complexity of the interaction and the time required
to interact. We, therefore, believe that it is advisable that users should not be
required to interact in the non-comfort zone. However, as this study is a first
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attempt to investigate the feasibility of a single touch action with varies pitch and
yaw, the aim was to investigate the core limitations of using pitch and yaw as an
input dimension.

Our study mainly focused on right-handed participants. A larger number of
left-handed participants would be required for conducting statistical analysis of
data from left-handed users. However, we assume that the comfort zone is similar
for left- and for right-handed users. This is supported by the results of the three
left-handed participants. While we cannot be certain that there are no differences,
the similarity between left- and right-handed participants suggests that potential
differences are small.

Our investigation is limited to pitch and yaw angles. We explicitly limited roll
variation by using pitch stabilizers. Existing interaction techniques already use
roll as an input source. For instance, in Apple’s iOS, it is possible to roll the finger
for precise text cursor manipulation. Fat thumb interaction by Boring et al. [10]
used the pitch and the roll of the finger for pan and zoom operations. While the
roll range is highly limited by the arm’s kinematic chain, it still requires further
investigation.

4.3 Two-Handed Interaction Scenario

To enable finger orientation input on the go, we investigate the use of finger
orientation in a two-handed smartphones scenario, see Figure 4.8. In detail, we
study the ergonomic constraints of finger orientation input for mobile devices.
While we in Section 4.2 investigated finger orientation in a static, restricted
tabletop scenario, we extend the work to study how users move the device and
how this affects what can comfortably be used for a two-handed interaction
scenario. We conducted a second study and asked 20 participants to rate the
comfort and feasibility of touch actions. Participants aligned their index finger
with given pitch and yaw angles while holding the device with their second hand.
They were allowed to freely move their finger and the device while we ensured
that they could still perceive content on the screen.

82 4 | Ergonomic Constraints



4.3.1 Hypotheses

Our study investigates the ergonomics of approaching a touch point with different
finger orientations and is guided by the hypotheses described below.

In the first study presented in Section 4.2 participants rated the feasibility of
finger orientation as input from “easy” to “hard”. They found that the comfort
zone is smaller than the non-comfort zone using the finger orientations which
were feasible. In the study, the touch surface was flat on a table, and by allowing
the user to move and rotate the touch surface, we expect the participants to
compensate exhausting body movements by moving and rotating the device.
Thus, we formed the following hypotheses:

Hypothesis 1a (H1a): Finger orientation input for two-handed smartphone
interaction is easier than for tabletop interaction.

Hypothesis 1b (H1b): Finger orientation input for two-handed smartphone
interaction has a larger comfort zone than for tabletop interactions.

Hypothesis 1c (H1c): No finger orientation is infeasible when using both hands
to interact with a smartphone.

The finger orientation movement will affect the orientation of the smartphone.
Consequently, we infer the following:

Hypothesis 2a (H2a): The smartphone orientation varies more in the comfort
zone than in the non-comfort zone.

Hypothesis 2b (H2b): The smartphone orientation is reflectively symmetric
based on the hand of interaction.

4.3.2 Study

To investigate the ergonomic constraints of using the finger orientation as an input
for mobile devices we conducted a study with 20 participants. To test the hypothe-
ses, participants were asked to perform touch actions while we systematically
manipulated PITCHFinger and YAWFinger of the orientation of the finger in relation
to the touch surface. Participants were asked to perform the touch action with
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Figure 4.8: A participants performing a 32.5◦ pitch and 45◦ yaw input with the left

hand while being equipped with our 3D printed tracking parts.

one hand while holding the touch surface, a smartphone, with the other hand. We
recorded the orientation of the participant’s finger, and the phone with a high
precision motion tracking system.

4.3.2.1 Study Design

We used a within-subject design. We asked participants to perform touch actions
with their index finger and rate the feasibility of the touch action with the depen-
dent variable RATING. Our overall study design follows the design described in
Section 4.2. We use the same independent variables with exactly the same lev-
els. We used the same three independent variables: PITCHFinger, YAWFinger, and
HANDS. We used 10◦, 32.5◦, 55◦, and 77.5◦ for PITCH. For YAW, we covered
the full 360◦ range resulting in 0.0◦ to 337.5◦ with 22.5◦ steps. All combinations
of PITCHFinger and YAWFinger were tested with the index finger of both HANDS.
Thus, we used a PITCHFinger × YAWFinger × HAND = 4× 16× 2 study design
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Figure 4.9: The setup with the 6DOF tracking system, the four pitch stabilizer on the

left and the Motorola Nexus 6 with markers.

resulting in 128 conditions. In addition to the dependent variable RATING, we
recorded the smartphone orientation (PITCHPhone, ROLLPhone, and YAWPhone) as
additional dependent variables.

In contrast to the first study, participants were allowed to freely move the
touch surface, their finger and their body to perform the touch action.

4.3.2.2 Apparatus

The apparatus consists of a Motorola Nexus 6 running the study application, a
6DOF tracking system (see Figure 4.9), and four pitch stabilizers (see Figure 4.11).
The application shows the next to perform touch action as well as a rating scale
where participants had to rate the feasibility of the touch action. To ensure that
participants were able to read content on the screen we presented them a word
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Figure 4.10: The study app is showing instructions to perform a 10◦ pitch and 45◦ yaw

input at the red crosshair while remembering the word daughters which is displayed in

the upper half.

which they had to remember and make a one out of three choices when the rating
scale was presented. We used all nouns out of the phrase set by MacKenzie and
Soukoreff [112]. However, we removed the plural form of the noun if the singular
version was also in the phrase set.

The study application first presented a red crosshair in the center of the screen
with one longer line to indicate the yaw orientation participants had to perform,
see Figure 4.10. Then, the application presented a rating scale where participants
had to rate the feasibility of the performed touch action with a slider control on
a scale with 100 steps from “easy” to “hard”. As in Section 4.2 we also added
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(a) Stabilizers (b) Rendering

Figure 4.11: (a) The four pitch stabilizers with the copper plate and the wire, we used

in the study to limit PITCH to 77.5◦, 55◦, 32.5◦ and 10◦ presented from left to right. (b)

A CAD model of a pitch stabilizer, revealing the wiring and the copper plate in the base.

the opportunity to tick a checkbox indicating that the input was not feasible. The
checkbox enabled the participants to distinguish between very hard but possible
and physically impossible touch actions.

To track the phone and finger, we used a high precision marker-based 6DOF
tracking system. The system consisted of 8 OptiTrack Prime 13W cameras. After
calibration, the system reported a residual mean error of .2mm.

To guarantee an accurate pitch angle we manufactured pitch stabilizers similar
to the ones used in Section 4.2, with a PITCHFinger of 10◦, 32.5◦, 55◦, and 77.5◦

as presented in Figure 4.11. However, we further improved the first design to
enable tracking of the stabilizer through the touchscreen. Therefore we inte-
grated a copper plate into the base of the stabilizer and an electric wire from the
copper plate to the slide of the stabilizer where the participant’s finger touches
the wire. This generated a touch event underneath the stabilizer similar to the
WebClip by Kubitza et al. [87] but without any electronic circuit similar to Wolf
et al. [183]. Additionally, we added a velcro fastener to allow free movements of
the participants (see Figure 4.11).

4.3.2.3 Procedure

We followed the instructions and procedure which we used in Section 4.2. After
welcoming a participant, we explained the procedure of the study and asked them
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Figure 4.12: The average feasibility RATING (from 0 = “easy” to 100 = “hard”) for

the different PITCHFinger inputs. The green areas represent the comfort zone in a

two-handed smartphone scenario. * the red striped areas represent the comfort zone

for tabletops as presented in Section 4.2.

to fill an informed consent. Then we introduced them to the system. We further
explained that they had to hold the phone with one hand while touching the screen
with the other. We explained that they had to touch the red crosshair and align
the finger yaw orientation with the long red line. Participants had to touch on
the red crosshair three times. To ensure they had visual contact we extended the
procedure to also read one word on the screen. They had to remember the word
and then rate the input feasibility. Here we explain in detail how to understand
the scale to match it. The application presented the question How feasible was it
to perform the touch action? Additionally, we explained the meaning of “easy”
and “hard” as defined in Section 4.2 as the effort required to perform the touch
action. After participants were familiar with the procedure, we started the app
to collect demographic data and initialize the randomization. Then we equipped
the participants with the finger marker and the pitch stabilizer needed for the
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Figure 4.13: The average feasibility RATING (from 0 = “easy” to 100 = “hard”) for

the different YAWFinger inputs averaged over all PITCHFinger. The figure also shows

the fitted sin curve representing the RATINGS. The blue line indicates the threshold

between comfort and non-comfort zones as defined in Section 4.2. * approximated

rating for tabletops as presented in Section 4.2.

condition, see Figure 4.8. After each condition, a pop-up told the participants
to change the condition settings, and here the experimenter helped to switch the
stabilizer.

4.3.2.4 Participants

We recruited participants from our university’s volunteer pool. In total, 20 partici-
pants took part in the study (14 male, and 6 female). The age range was between
20 and 27 years (M = 23.7, SD = 1.9). All participants were right-handed, and
none had locomotor coordination problems. We reimbursed the participants with
10e.

4.3.3 Results

We collected 2,560 ratings from 20 participants. The average RATING was 41.8
(SD = 24.7). From our 2,560 ratings, none was marked by the participants as
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not feasible to perform. Further, 41 (1.6%) of the words were wrongly selected
by participants. The RATING for these wrongly selected words was M = 56.4
(SD = 24.2). To ensure that only samples were going into the analysis where the
participants had been able to read the text, we removed all samples with wrongly
selected words.

4.3.3.1 Rating

To conduct a RM-ANOVA, we applied the ART [180] procedure to the feasible
RATINGS, using the ARTool toolkit1 to align and rank our data.

We conducted a three-way RM-ANOVA to determine whether the independent
variables significantly influenced the perceived feasibility of performing the
touch action. Our analysis revealed significant main effects for PITCHFinger ,
YAWFinger, and HAND on feasibility (F3,2371 = 18.15, p < .001; F15,2371 = 81.17,
p < .001; F1,2371 = 38.45, p < .001, respectively). Further, we found significant
two-way interaction between YAWFinger × HAND (F15,2371 = 29.37, p < .001).
However, there were no significant two-way interactions between PITCHFinger ×
HAND and PITCHFinger × YAWFinger (F3,2371 = 1.598, p = .19; F45,2371 = .942,
p = .58, respectively). Lastly, we found a significant three-way interaction
between PITCHFinger , YAWFinger, and HAND (F45,2371 = 2.08, p < .001).

Figure 4.12 presents the distribution of feasibility RATINGS for all finger
YAWS and both HANDS. We employed further comparisons to investigate how
the different variables influenced the results.

We calculated a sine regression to model the RATING based on YAWFinger.
Therefore we can model the rating for the right hand using

RATING = 39.16−20.17sin(YAWFinger +1.11) (4.3)

and the left hand using:

RATING = 43.91+19.7sin(YAWFinger − .98) (4.4)

1The Aligned Rank Transform (ART) tool by Wobbrock et al.
http://depts.washington.edu/madlab/proj/art/index.html
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The fitness for the right hand is R2 = .98 and for the left hand R2 = .96. We
compared our functions with the function in Section 4.2 using t-tests. For the left
hand model functions there was a significant difference in the modeled RATING

for our new function (M = 42.1, SD = 13.6) and the tabletop function (M = 56.2,
SD = 29.5); (t15 =−3.2, p = .006). For the right hand model functions there was
also a significant difference in the modeled RATING for our new function (M =

38.9, SD = 15.5) and the tabletop function (M = 54.8, SD = 34.4); (t15 =−3.2,
p = .005).

In Section 4.2 we divided the YAWFinger input space into a comfort zone
and a non-comfort zone. We argued for their split based on input rated as not
feasible to perform. None of our participants rated a single input as not feasible;
however, our results as presented in Figures 4.12 and 4.13 follow the same trend.
Consequently, we used the same threshold of 40 to divide the comfort zone and a
non-comfort zone.

The comfort zone for the right HAND ranges from 303.75◦ to 123.75◦ and
the comfort zone for the left HAND ranges from 236.25◦ to 56.25◦. Therefore
the span of both comfort zones is equal to 180.0◦ for both hands and two comfort
zones overlap by 112.5◦. Thus the non-comfort zones are also 180.0◦ wide.

4.3.3.2 Phone Orientation

We matched the motion tracking data and the touch data using the timestamps of
the touch events and the motion tracking data. We filtered all samples where the

Table 4.3: One-way RM-ANOVAs to determine if the phones’ orientation is depended

on ZONE within HAND.

Axes HAND df F p

PITCHPhone right 1, 19 38.47 <.001
PITCHPhone left 1, 19 30.21 <.001
ROLLPhone right 1, 19 18.31 <.001
ROLLPhone left 1, 19 25.38 <.001
YAWPhone right 1, 19 7.61 .012
YAWPhone left 1, 19 14.54 <.002
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time distance was larger than 30ms. This resulted in 177 (2.36%) filtered samples.
The remaining time difference was M = .36ms with an SD of 1.98. Thus, the
following analysis is based on the remaining 7,324 touch samples.

In the following the 0◦ orientation of the phone for all 3 axes (PITCHPhone,
ROLLPhone, and YAWPhone) is defined as the phone laying flat in portrait mode
with the screen up in front of the participant. Further, the rotation direction of
the axes are defined to be positive when rotating clockwise and negative when
rotating counterclockwise.

We conducted three one-way RM-ANOVAs for each HAND to determine
whether ZONE within HAND significantly influenced the orientation of the phone
(PITCHPhone, ROLLPhone, and YAWPhone). As Table 4.3 shows, we found signifi-
cant effects for all six one-way RM-ANOVAs. The orientations are presented in
Figure 4.14.

Lastly, we mirrored the data of the phone orientation for the left-handed
interaction, resulting in a dataset that mimics right-hand usage data, as shown in
Figure 4.15. We first modeled the orientation of the phone using a sine function,
resulting in an average R2 of .83, for PITCHPhone, ROLLPhone, and YAWPhone R2

is .83, .79, and .83 respectively. We then modeled the orientation with a skewed
Sinus function, a Clausen function [20].

Sn(x) =
∞

∑
k=0

sin(kx)
kn (4.5)

To fit the skewed Sinus function to the data, we added fitting parameters to
stretch or compress the function if needed. We again used ordinary least squares
to estimate the fitting parameters a to e for our fitting function:

f it(x) = aSb(c(x−d))+ e (4.6)

Using a skewed Sinus function we achieved an average fit of R2 = .89, for
PITCHPhone, ROLLPhone, and YAWPhone R2 is .85, .86, and .96 respectively. The
fitted functions are presented in Figure 4.15.

92 4 | Ergonomic Constraints



(a) Left-handed interaction
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(b) Right-handed interaction

0° 45° 90° 135° 180° 225° 270° 315° 360°
Finger Yaw

-45°

0°

45°

90°

Av
er

ag
e 

Ph
on

e 
Or

ie
nt

at
io

n Pitch
Roll
Yaw

Comfort Zone
95% CI

Figure 4.14: The average phone orientation in a two-handed smartphone interaction

scenario.

4.3 | Two-Handed Interaction Scenario 93



0° 45° 90° 135° 180° 225° 270° 315° 360°
Finger Yaw

-45°

0°

45°

90°

135°

R2 = .85

R2 = .87

R2 = .96

Pitch Left
Pitch Right
Fit both Pitch

Roll Left
Roll Right
Fit both Roll

Yaw Left
Yaw Right
Fit both Yaw

M
ea

n
 P

h
o
n
e 

O
ri
en

ta
ti
on

 A
d
ju

st
ed

Figure 4.15: The average phone orientation adjusted to be hand invariant.

4.3.3.3 Pointing Accuracy

We first filtered 54 (respective .7%) of the 7,680 touch events where the dis-
tance to the center is larger than the mean plus three times the SD. The re-
maining average distance to the target was M = 2.9mm (SD = 1.75). We con-
ducted a three-way RM-ANOVA to determine whether the independent vari-
ables significantly influenced the touch accuracy. Our analysis revealed signifi-
cant main effects for PITCHFinger and YAWFinger on distance (F3,2363 = 483.493,
p < .001; F15,2363 = 10.03, respectively), however, not for HAND (p < .001;
F1,2363 = 1.243, p = .264). Further, we found significant two-way interactions
between PITCHFinger × HAND and PITCHFinger × YAWFinger (F3,2363 = 15.659,
p =< .001; F45,2363 = 1.724, p < .003, respectively). However, there was no sig-
nificant two-way interaction between HAND × YAWFinger (F15,2363 = .564, p =

.904). Lastly, we found a significant three-way interaction between PITCHFinger,
YAWFinger, and HAND (F45,2363 = 1.512, p = .016).

A Tukey’s HSD post hoc test on PITCHFinger with Bonferroni correction
applied only showed a significant difference (all p < .05) between 10◦ and all
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Figure 4.16: The average diatnce bewtween the touch point of the finger tip and the

cross hair on the screen.

other pitch values. We did not conduct the post hoc test for YAWFinger due to the
number of comparisons which likely lead to no insights which we support by a
visual analysis of Figure 4.16.

4.3.4 Discussion

We first modeled the RATING using a Sine wave. We conclude that the overall
trend of how the rating correlates with the finger yaw orientation is in line with
the findings made in Section 4.2. However, the modeled ratings for both hands
are significantly easier than in the tabletop scenario. Therefore we confirm H1a.
Thus, allowing the users to move the device and the fingers makes the input easier
to perform, despite the fact that the participants had to control more degrees-of-
freedom.

We used the same rating threshold as in Section 4.2 of 40 to distinguish
between the comfort zone and the non-comfort zone . The comfort zone for two-
handed interaction was 180.0◦ and therefore 33.3% larger than in the tabletop
scenario. Thus, we confirm H1b. This allows designers to use a larger input range
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for yaw inputs. Furthermore, the overlap of the left and the right hand’s comfort
zones is 66.7% larger, enabling designers to implement yaw without adjusting for
handedness.

We carried out our study in the same ways as described in Section 4.2. How-
ever, in contrast to the tabletop results, for our two-handed scenario, we did not
observe infeasible input. Therefore, we can confirm H1c. For tabletop scenarios
the non-comfort zone describes inputs which might not be feasible to perform
by users, in the two-handed scenario the non-comfort zone can be used to gain
attention for safety-critical input without making the input too hard.

Our analysis revealed a significant effect of YAW on the smartphone’s orien-
tation. In detail, we found that the smartphone orientation changes more in the
non-comfort zones than in the comfort zones confirming H2a. While we expect
that the screen was readable at all time due to the low error rate when selecting
words, the change in orientation shows that the screen was not always perfectly
facing the participant. Therefore, while reading a single word remains possible,
designers need to be aware that using the finger orientation as the input changes
the orientation of the display. Especially when exceeding the comfort zone, the
readability will decrease.

We modeled the smartphone orientation using a Clausen function and achieved
an average R2 of .89 when the left-hand data is mirrored. This shows that the
smartphone orientation can be modeled for both hands with one function for each
degree-of-freedom. Thus, we confirm H2b. The function enables us to model the
smartphone orientation for each finger orientation. Further, this allows designers
to understand how possible inputs would affect the smartphone orientation and
thus influence the readability of the content displayed on the smartphone.

Lastly, our analysis revealed that the offset between the input and the target is
significantly different for a pitch of 10◦ compared to all other conditions. Holz
and Baudisch [69] found significant differences between all of their 5 conditions
ranging from 15◦ to 90◦. However, they studied only 2 levels of YAWFinger, while
our analysis also revealed significant main effects for 16 levels of YAWFinger and
both HANDS. Thus, we conclude that today’s touchscreens are not well suited
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for 50% of the finger orientations. While Henze et al. [60] presented a model
to improve touch input, taking the finger orientation into account would further
improve single touch input.

In line with Section 4.2, we showed that the feasibility RATING for finger
orientation with two-hands can also be modeled using a Sine function. However,
we found that finger orientation is easier when the user is allowed to move
and rotate the phone with the second hand than in the tabletop scenario. As a
consequence, this leads to a phone orientation which is not perfectly in sight of
the user.

In our study, we did not control if participants bent their finger on the Proximal
Interphalangeal (PIP) joint or the Metacarpophalangeal (MCP) joint of the index
finger. However, the two 3D printed parts controlled for the distal interphalangeal
(DIP) joint of the index finger. As the DIP has a limited movement range, we
assume that our results can be transferred to situations where users can bend all
joints.

4.4 Summary

In this chapter, we investigated RQ2: “Which ergonomic contains occur when
using finger orientation as an additional input?” In two controlled lab studies, we
first showed how ergonomic constraints affect the feasibility of finger orientation
as an additional input in a tabletop setup. We then showed how finger orientation
get’s affected in a mobile scenario. In detail, we conducted two study to investigate
the feasibility of using finger orientation where the user is preforming different
finger orientations. We systematically varied the finger orientations using 4
different pitch and 16 different yaw angles while ensuring that the screen was
visible to the participant during the interaction. Further, participants were asked
to perform all combinations with the index finger of both the right and the left
hand. The results show that not all orientations are equally feasible, with some
orientations being infeasible to perform. Furthermore, we show that the input
space for each hand can be divided into two zones; the comfort and non-comfort
zones. While there are differences between the two scenarios the overall trend
remains the same. Moreover, the feasible input range is large in the mobile
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scenario due to the fact that users start to turn the phone. We showed that the
feasibility rating correlated to the phone orientation. A harder feasibility rating,
therefore, results in a phone orientation tilted away from the user. Thus, the larger
input range in the mobile phone scenario comes at the cost of a in the worst case
scenario up side down flipped smartphone.
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5
Social Implications

The proliferation of mobile devices has rendered mobile notifications ubiquitous.
However, researchers are only slowly beginning to understand how these technolo-
gies affect everyday social interactions. In particular, the negative social influence
of mobile interruptions remains unexplored from a methodological perspective.
In the following chapter, we, first, present a new mixed-method approach to
evaluate interaction techniques regarding their disruptiveness in social settings.
To showcase our new approach, we compare the standard Android caller against
a new method called SurfaceSliding where the phone is slid over the table instead
of using the touchscreen. In the second part of the chapter, we evaluate finger
orientation interaction in a face-to-face conversation using our new mixed-method
evaluation approach (RQ3).

Parts of this chapter are based on the following publications:

S. Mayer, L. Lischke, P. W. Woźniak, and N. Henze. “Evaluating the Disruptiveness of
Mobile Interactions: A Mixed-Method Approach.” In: Proceedings of the 2018 CHI Confer-
ence on Human Factors in Computing Systems. CHI ’18. Montreal QC, Canada: ACM,
2018, 406:1–406:14. ISBN: 978-1-4503-5620-6. DOI: 10.1145/3173574.3173980a
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Planned publication: S. Mayer, H. V. Le, M. Weiß, and N. Henze. Effect of Finger Orienta-
tion on Social Settings. 2019

aA video of this study is available under:
https://www.youtube.com/watch?v=6-HGXW6bLPw

5.1 Evaluating the Disruptiveness of Mobile

Interactions

In the following section, we contribute a mixed-method evaluation approach
for assessing the disruptiveness of mobile interaction techniques. We postulate
an approach that uses a conversation task for two participants. We employ eye
tracking as a quantitative measure and combine it with qualitative evaluation based
on semi-structured final interviews. In traditional coding techniques for face-to-
face conversations used in past work [14, 44, 133], hour-long encoding of video
and audio material is needed. In contrast, our work offers an alternative approach
that highlights how eye-tracking and interviews can offer complementary yet
different insights. Our method is different from past approaches as it is designed
to offer quick answers that result in actionable insight during a design process.

Further, we present an example study where we analyze the disruptiveness
of two techniques to dismiss calls, namely the standard Android incoming call
dialog and SurfaceSliding; a new method which allows the user to slide the
phone on the table to decline a call. Using the rapid eye-tacking analysis, we
found that participants were indeed significantly objectively less distracted by
the one dismiss technique. Further, the interviews revealed a set of factors which
further help improve the design: (a) the need for empower participants to fine-
tune their interruption acceptance levels, (b) the impact of the social setting on
interruption acceptance (c) the importance of exceptions and emergencies, and
(d) the influence of group dynamics. The objective and subjective results together
present a holistic perspective on user behavior and reasoning.
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5.2 Research Design

We present the considerations and choices involved in creating our evaluation
approach to assess the disruptive impact of mobile interruptions in conversation.
We discuss the driving research questions and the alternatives that we considered
while designing our approach.

5.2.1 Requirements for a new approach

As part of a larger project on designing novel ways to interact with mobile devices
in social settings, we encountered a key issue early in our design process. Once we
started developing early prototypes, we required ways to rapidly gather feedback
from participants and decide which ideas needed to be rejected early. However, we
found it difficult to determine which of our prototypes were potentially disruptive
to conversations. The method we required, needed to: (a) allow for work with
low-fidelity prototypes and Wizard-of-Oz studies; (b) provide clear answers on
which interaction techniques are best among a set; (c) generate enough qualitative
user feedback to play a generative role for later stages of the design process;
(d) be applicable for casual social environments.

As shown in our review of related work in Section 2.3, CSCW and HCI
literature did not present any viable solutions. In our search for methods, we later
investigated other literature sources for inspiration. Disruption and interruption
in conversations is studied in communication science and it is sometimes used
to understand interaction between users and interactive artefacts. For example,
Karsvall [80] used a dialogical approach to understand the team dynamics of
operating theatres. While such an approach is well grounded and offers an in-
depth look into the details of the social dynamic involved, the analysis requires an
amount of time that is not manageable for an interaction design process. Further,
conversation analysis may not yield results that could motivate decisions on which
prototypes to choose.

Another field that has a history of studying interruptions is Human Factors
and Ergonomics (HFE). Models of disruptions and interruptions are often used
in HFE (e.g. Endsley and Jones [30]), so one could expect that suitable methods
could be translated from HFE. This is not the case, however, for two reasons. First,

5.2 | Research Design 101



most studies of disruptions focus on well-defined controlled tasks. Hodgetts and
Jones [66] studied the impact of mobile notifications, which appears to be relevant
for our inquiry. However, as appropriate in the HFE tradition, the notifications
were studies while performing a highly artificial task (the Tower of London task).
This limits the applicability of the methods used in HFE for application in an
interaction design process. Secondly, and more fundamentally, the entire field of
HFE focuses on non-discretionary use [52], which limits the validity of whatever
possibly adaptable method when used in the context of casual social interactions.

Consequently, we opted for re-appropriating some of the methods used in
the past in the HCI field and combining them into a new approach. This way,
we could ensure a new mixed-method approach would be ecologically valid for
social settings and potentially offer input to the design process.

5.2.2 Blending existing approaches

Faced with the challenge of designing a new approach to meet our needs, we
decided to adopt a mixed-method approach. This was motivated by the need
for a decision of which early prototypes were worth pursuing, and assuring that
enough generative user feedback was produced. Our approach consists of a
quantitative eye tracking metric, an in-depth semi-structured interview and a
generic discussion task designed for strangers.

To qualitatively measure the disruptiveness a given interaction technique pro-
duces, we decided to augment the method used by Vertegaal et al. [169]. In this
work, the authors show that gaze features are directly coupled to conversational
attention. Specifically, they show that looking at one’s interlocutor is a significant
indicator that one is engaged in a conversation. In our approach, we use this
property by investigating the differences in gaze directed towards the interlocutor.
Based on the findings of Vertegaal et al. [169] we assume that participants direct a
participant- and interlocutor-specific fraction of their gaze time to their interlocu-
tor. Consequently, we investigate how different interaction techniques affect the
time spent looking at the potentially disruptive technology and the interlocutor.
From a technical perspective, the method requires employing two eye trackers
as shown in Figure 5.2. As continuous timings are measured, data analysis is
performed using fast and simple statistical methods such as analysis of variance.
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While using quantitative eye tracking metrics can reveal how disruptive a
method is, the quantitative metrics are unlikely to stimulate further development
in a design process. Thus, we decided to employ semi-structured interviews [17,
45], a staple method of interaction design, to assure that enough user feedback
can be gathered to not only eliminate possible prototypes, but also stimulate the
design of new solutions. In our approach, we use an entry interview to establish
the participants’ initial attitudes towards disruptions caused by technology in
conversations. This is not only done to generate possible design inspiration, but
also to ascertain whether participants find any disruptions acceptable. As shown
later in this section, some participants consider state-of-the-art technology-based
disruptions offensive and they differentiate between the disruptiveness levels of
different interaction techniques. A final interview is performed to qualitatively
assess the disruptiveness caused by a given technique. This also enables gathering
suggestions for prototype improvement. Finally, we employ a simplified version
of qualitative coding with affinity diagramming [57] for interview analysis as this
offers a rapid way to analyze and understand the feedback provided by interviews.
As our approach is not intended to build a structured understanding of disruption,
we believe that a more advanced qualitative analysis method is not required.

Our proposed mixed-method approach combines quantitative eye tracking met-
rics and qualitative interview feedback. The eye tracking data allows determining
which technique is less disruptive statistically. However, a better understanding
of how the technologies influenced the conversation can only be gained from
qualitative interviews. The interviews allow determining further design oppor-
tunities and identify drawbacks which lead to future design improvements and
better interaction concepts.

5.2.3 Choice of Participants and Stimulus

As we endeavored to design an approach that would allow for rapid evaluation, we
considered flexibility in terms of participant choice as a key feature. Participants
are often hard to recruit, especially for studies early in the design process, when
rapid feedback is needed. Our approach can be used with a wide variety of
participants as it uses a generic conversation stimulus. Participants are grouped
in pairs randomly. Further, the experimental design allows for large within-pair
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variability in eye tracking metrics and thus it does not put any restrictions on
the participants’ gender, age, race, native language etc. Previous work showed
that gaze fixations are an effective way to evaluate two systems [5]. Moreover
Okamoto et al. [141] showed eye movements are affected by conversations. Thus,
when using eye tracking in conversations, this should be taken into account in the
design. As a result measuring the time of eye contact or time spent looking at the
conversation partner is not efficient as a disruption measurement. Therefore we
propose time spent on the disruption as the measurement. Therefore, a between-
groups design for the experiments is necessary as sequence effects are likely to
appear when a conversation is prolonged.

We use a generic discussion task in our approach. We decided to use a task
designed by language experts specifically for conversations between strangers
with a particular focus on paying attention to the other party in the discussions.
Consequently, we use the discussion task from the University of Cambridge’s
English for Speakers of Other Languages Certificate in Advanced English Speak-
ing Test [29]. The task provides a stimulus that is both manageable for advanced
non-native speakers and engaging enough for native speakers. The task also
includes a shorter introductory segment that can be used as an icebreaker for the
discussion. An additional advantage of using a speaking exam task is the fact
that analogous tasks exist and can be easily found for other languages and, thus,
our approach is not specific to English. Again, using such a task necessitates a
between-groups design, as there is no possibility to assure that different discussion
topics are equally stimulating.

5.2.4 Study Plan

The final study procedure in our approach is shown in Figure 5.1. At the begin-
ning of each study session, the facilitators conduct individual semi-structured
interviews (Entry Interview, see Figure 5.1). The interview serves as a means
of collecting demographic data on the participants. Further, it introduces the
conversation task. The purpose of the study is not revealed to the participants until
the end of the study. Informing the participants about the focus on mobile dis-
ruptiveness may cause potential bias due to increased awareness to interruptions.
Thus only one participant will be introduced to the additional disruptive task.
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Participant 1 Participant 2 Data Collection
Entry

Interview
Entry

Interview

Final
Interview

Final
Interview

Warm-up phase

Discussion

Figure 5.1: The study procedure in our new mixed-method approach. Data collection

methods are: video, audio and eye tracking.

After the instruction and training phace, the participants are introduced to each
other and start wearing the eye trackers. The facilitator then presents the experi-
mental task. First, the participants run through a warm-up phase to get confident
with their conversation afterward also the disruption is taking place to observe
the participants reactions and potential behavior change. After the discussion
is concluded (we recommend a time of 10min, based on language examination
experience [29]), individual debriefings (Final Interview, see Figure 5.1) are
performed. All interviews are audio recorded. As a safety precaution, we also
recommend video recording the conversation. After the study, eye tracking data is
analysed using inferential significance testing and simplified qualitative analysis
with affinity diagramming is performed on the interview data.

5.3 Study 1: SurfaceSliding

Next, we present a user study that illustrates a practical application of our ap-
proach implementing the proposed study plan. We contribute a standard study
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description here to showcase how our approach can be used effectively to pro-
vide a concise report if required. Our presented mixed-method approach allows
analyzing any device or concept, which can potentially disrupt ongoing conver-
sations. Ubiquitous mobile devices such as smartphones or smartwatches have
high potential to cause disruption [154], and hence we present a scenario where a
mobile phone causes disruption in a face-to-face conversation. In the example
study, we compared two techniques to decline incoming calls.

In particular, we investigate SurfaceSliding, a new method to decline incom-
ing calls and compare it with the standard technique provided by the Android
operating system. The interaction technique is mostly inspired by the work of
Wiese et al. [178] who showed that participants tend to have their phones lying
on a table when at home or in the office. Work by Porcheron et al. [144] and Su
and Wang [162] show that phones also play an important role in social settings,
and highlights that phones in a pub setting are often positioned visibly on the
table. We chose an incoming call scenario as a disruption example inspired by
Bogunovich and Salvucci [8]. Declining a call is an action that requires attention,
but the attention should be minimal. Thus, this task is a good candidate for de-
signing for limiting disruptions. This has the advantage since all participants were
equally familiar with the scenario and most likely have been in a similar scenario
before. SurfaceSliding, an intermediate prototype in our process for building less
disruptive mobile phone interactions, enables the participant to decline a call by
dragging the phone along the table (instead of dragging their finger over the touch
screen).

5.3.1 Study

The study had a between-groups design with a single independent variable, TECH-
NIQUE. In the Touch condition, the participant with the phone got a standard
Android incoming call interface, the interaction is presented in Figure 5.3. In the
SurfaceSliding condition, the phone was modified so that the participant could
use SurfaceSliding to interact with it. The interaction technique is illustrated in
Figure 5.4. Further, as only one participant needed to interact with the phone, we
will refer to them as HasPhone and NoPhone.
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Figure 5.2: The study setup showing two participants in a conversation wearing mobile

eye tracker.

5.3.1.1 Apparatus

To investigate the effect of using SurfaceSliding for declining calls we integrated
SurfaceSliding in the standard GUI of Android v5.0. We implemented SurfaceS-
liding on a Nexus 5, in combination with the incoming call prototype, which had
been modified to show an incoming call eight times within 10min of discussion.
However, the first two minutes of the conversation were left free of disruption to
ensure a fluent discussion. After minute two, eight incoming calls were scheduled
each within one of the remaining 8 minutes. Further, we made sure that two calls
were always at least 20sec apart. The study was controlled by a separate laptop
where it was possible to start the study or turn the phone into testing mode to
show participants the declining methods. The phone was in silent mode the whole
time, so ringtone and vibration were turned off. Further, the screen was black by
default. The only indicator for an incoming call was the light when the phone
displayed the incoming call. After declining a call, the screen turned black again.
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We implemented a recognition algorithm which was able to detect moving
the device in any direction on the table. For detecting the movement, we used the
front facing camera combined with OpenCV’s optical flow algorithm. Further,
we used the phones’ built-in sensors to make sure that the phone was not picked
up from the table. The detection algorithm was fully implemented on the phone
itself. To trigger the decline action the phone needed to be moved by 5cm to the
left.

We used two GoPro Hero 3+ and a Zoom H6 audio recorder with two table
microphones to capture the content of the discussion. Further, we placed three
coffee mugs, four glasses, one bottle and one book on the table to simulate a real-
istic discussion environment as would occur in an office or café scenario. A Zoom
H1 audio recorder was used to record the second interview. Both conversation
partners were equipped with PupilLabs mobile eye trackers to determine how long
each participant looked at the phone. To be able to automatically detect where the
participants were looking, we used table-mounted QR codes (see Figure 5.2) for
establishing a reference coordinate. For both eye-tracking cameras, we used an
IR camera with IR illumination (dark pupil tracking) recording with 640×480px
at 30FPS. The participant without a phone (NoPhone) had a world camera with
a field of view (FoV) of 90◦ recording with 1920×1080px at 30FPS. The other
participant (hasPhone) had a world camera with a FoV of 100◦ diagonal recording
with 1910×1080px at 30FPS.

5.3.1.2 Task

To ensure that participants did not know about any involvement of technology we
invited the participants to a study with the title Stress in Conversations. We used
5 questions from the CAE speaking test by [29] for the conversation. We played
the 5 questions from the exam DVD included with the book to provide the same
stimulus for all participant pairs. The questions used were as follows: (1) “Here
are some pictures showing different ways in which the computer affects our lives.
First, talk to each other about how these pictures show the role of computers
nowadays. Then decide which picture best reflects the difference computers have
made to our lives.” (2) “Some people say that computers are helping to create a
generation without social skills. What’s your opinion?” (3) “What are advantages

108 5 | Social Implications



(a) Touch Phase

Incoming Call

(b) Movement Phase

Incoming Call

(c) Selection Phase

Incoming Call

Figure 5.3: Declining an incoming call selection phase using the standard touch

interface. In the first step (a) the participant taps the center icon and then (b) moves it

over to the decline symbol, finally (c) the release of the finger will trigger the highlighted

action.

and disadvantages of shopping by computer?” (4) “How far do you agree that
computer is the greatest invention of modern times?” (5) “A lot of personal
information about all of us is now kept on computers. Do you find this worrying?”

5.3.1.3 Procedure

The participants were guided through the whole study by two researchers. When
both participants arrived at our study room, one researcher asked the first par-
ticipant to enter the room while the second stayed outside to interview the two
participants independently. Entry interviews were then performed, during which
the participants filled in a consent form and a demographics questionnaire.

The participant who arrived first was always the participant interacting with
the phone (HasPhone). Therefore HasPhone was asked to enter the study room
first while the other participant (NoPhone) was interviewed in front of the study
room. We first interviewed HasPhone. We then handed the phone to HasPhone
and told them that they had to interact with the phone during the study. However,
we also told them that the other participant was unaware that a phone would be
involved in the study. We then showed how declining a call worked using the test
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(a) Grasp Phase

Incoming Call

(b) Movement Phase

Incoming Call

(c) Selection Phase

Incoming Call

Figure 5.4: Declining an incoming call using SurfaceSliding. In a first step (a) the

participant grasps the phone. Then the moves the phone in the direction of the decline

symbol in respect to the center of the phone (b). After the movement (c) the decline

call action is triggered.

mode of the app. We let them try and familiarize with the interaction techniques
until they were comfortable declining calls. After the trial phase, we then set the
phone to study mode where the screen turned black and was waiting for simulated
incoming calls. After the introduction phase, we invited the NoPhone participant
into the study room.

Then, we asked them to put on the eye-trackers and started the calibration
process; starting all recoding, video, audio, and eye-tracking. Then we played
back the discussion instructions from CAE [29]. We used the first instruction as
an icebreaker to start the conversation. The first instruction came with images to
help the discussion develop. The question was discussed for about two minutes,
then we presented the second question followed by more questions if needed.
When presenting the second question, we removed the images from the table.
This was when the data recording that was later analyzed started. Whenever the
discussion was less active, the facilitator asked an additional question from the
task sheet.

After the discussion phase, participants were interviewed individually. First,
we asked them about the overall outcome of the discussion to reflect on the
discussion. Followed by questions about their personal discussion behavior. We
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then inquired whether they noticed the presence of the phone and whether it
affected discussion. We then asked whether the declining of the phone call was
appropriate. The HasPhone participants were asked how they felt on two levels:
how it felt to observe the phone and what was the experience of declining the call.

Finally, both participants were asked how they deal with and where they
store their phone in the following four situations: (1) in a private face-to-face
conversation, (2) in a private group conversation (3) face-to-face in a business
situation and (4) in a business group setting. We wrapped up the interview with
an open question for additional comments

5.3.1.4 Participants

We recruited 24 participants (17 female, and 7 male) through our university’s
mailing list. The participants were aged from 19 to 33 years (M = 24.9, SD= 3.9).
All of them had either no visual impairment or corrected to normal vision by
wearing contact lenses. Three of the pairs had known each other beforehand. We
reimbursed the participants with 10e.

5.3.2 Results

In this section, we present the results of our example study in which we compared
a standard decline a call technique against SurfaceSliding. We show how engaging
participants in a conversation task allowed us to statistically determine which
interaction technique was less disruptive and how the interview results allow us
identified possible future design improvements.

5.3.2.1 Eye Tracking Data

Due to technical problems of the eye tracking software, we excluded two groups
from the eye tracking analysis. We first used the built-in QR code plug-in of
the eye tracker to recognize where the participants looked. However, in con-
trast to pre-study results, the eye tracking accuracy was insufficient, most likely
due to participant not sitting fully upright. Therefore, we manually labeled the
remaining 20 eye tracking videos. For further analysis we treated participants
independently from each other by using the variable HasPhone with two levels
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Figure 5.5: The average values and standard error for TECHNIQUE × PHONE.

— either the participant had the phone or not. The results of how long the par-
ticipants looked on average at the phone is presented in Figure 5.5. On average,
participants spent M = 22.5s, SD = 21.8 with looking at the phone. Participants
in the Touch–Phone condition looked at the phone for the longest period of time,
M = 48.1s, SD = 23.7. Those in the SurfaceSliding–NoPhone condition exhib-
ited the shortest time looking at the phone, M = 8.6s, SD = 8.6. A two-way
ANOVA revealed a statistically significant difference between the Phone and
the NoPhone conditions F1,16 = 10.587, p = .005. We also found a significant
difference between the Touch and the SurfaceSliding conditions F1,16 = 4.623,
p = .047. We found no significant interaction effect (p = .139).

5.3.2.2 Qualitative Data

Interview recordings were transcribed for analysis, the total recording time was
4.31h. We conducted initial filtering with two researchers to only leave data about
in-conversation interactions. Next, three researchers coded 15% of the material
to establish an initial coding tree. A single researcher coded the rest of the data.
Once the initial coding was finished, we used affinity diagramming with printed
quotes to establish higher-level themes through constant comparison. We labeled
quotes of the participants with group name, the condition, (S) for SurfaceSlding
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or (T) for the Touch condition, and a P if they had a phone or NP if they had no
phone. We first present general comments about the technique studied and then
discuss the themes of disruption by technology in conversation.

5.3.2.3 General Feedback

As our participants were unaware that we were interested in studying phone inter-
actions, we asked how their conversation was influenced by the incoming calls.
Independent of TECHNIQUE, none of the participants without a phone realized
that the phone was part of the study. Two participants did not acknowledge the
presence of a device on the table until we asked them explicitly (5–S–NP and
12–T–NP). One participant believed that the other person was checking the time
on the phone (1–T–NP). All others expressed their awareness of the interruption
quite vividly:

“(My discussion partner) has repeatedly interrupted (the conversa-
tion). (2–S–NP)”

Most of the negative statements concerned the lack of familiarity with the method:

“I’d rather not use (SurfaceSliding), but this may be entirely due to
my current habits. (12–T–P)”

On the other hand, participants reflected that the method was easy to use, even
without attributing visual attention to the phone:

“(With SurfaceSliding) rejecting calls was easy, also without looking
[at the phone]. (5–S–P)”

Another participant noted that SurfaceSliding did not have a negative influence
on the conversation:

“(SurfaceSliding) is clearly unobtrusive. (11–S–P)”

Four participants provided additional suggestions on how to improve declining
incoming calls. Participants suggested that one should always slide away from
the body to decline calls, irrespective of the location of the phone or the hand
used. A left-handed participant suggested:
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“(The system) should account for right- and left-handed people.
(3–S–P)”

Further, by analyzing the recorded videos, we can conclude that none of the
participants tried to pick up the phone from the table; even those who had the
Touch condition and had not been instructed to keep the phone on the table. It is
notable that all calls were successfully declined.

5.3.2.4 Levels of Phone Acceptance in Conversation

When asked about the role that smartphones may play in conversations, the
participants reported many different stances. Our analysis showed two equally
large groups of participants. The first group was strict about eliminating any
phone interaction from the conversation. They believed a smartphone was only
an unnecessary distractor. One participant remarked:

“Irrespective of the situation, if one wants to participate in a discus-
sion, the phone belongs in the pocket. (8–T–NP)”

The second group expressed that the acceptance of a smartphone in a conversation
was highly dependent on the context of the interaction. These participants men-
tioned that the topic and the people present highly affected what was acceptable.
They also believed that the acceptability depended on how the interactions were
handled:

“It’s only okay when the calls are rejected and the influence on the
conversation is as small as possible. (9–S–P)”

We observed that some of the participants were happy to accept a phone placed
on the table during conversation, especially in more casual settings. The position
of the phone on the table also appeared to be important

“In a meeting, (it’s okay to put it) on the table, but a bit on the side.
(7–S–P)”
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5.3.2.5 Private and Professional Settings

Most participants expressed that different acceptance levels were valid for profes-
sional and casual settings. Many recommended ways where suggested to handle
incoming calls specifically in a business environment. Participants expressed that
while participants are often expected to be aware of the state of their smartphone,
they should not interact with it during meetings:

“In business meetings, the phone can lay on the table, but it should
not be used. (8–T–NP)”

In contrast, participants showed more flexible attitudes when interacting with
groups of friends or family members. Attitudes ranged from simply being more
lenient towards interruptions to not perceiving the presence of a phone as a factor
influencing the conversation:

“(When talking to) friends, the phone is always on the table, but not
in the case of family. (7–S–P)”

“[. . .] with friends, the phone can always be in your hand.
(11–S–P)”

Notably, participants were stricter in home environments where they saw no need
to pay attention to their phone when having family conversations.

5.3.2.6 Handling Interruptions, Exceptions and Emergencies

Participants commented extensively on situations where exceptions are possible
and smartphone use during conversation may be acceptable. They suggested a
number of cultural codes that could be used in special circumstances, including
placing the phone on the table as an indicator that one is expecting a call:

“When you have company, [put the phone] on mute in your pocket.
On the table is acceptable when expecting extremely important calls.
(3–S–P)”

Interrupting conversation was perceived as highly problematic, even in exceptional
situations:
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“When one picks up, one should apologize immediately. (12–T–NP)”

Moreover, participants indicated that one should verify if the call is important for
a possible interruption to be acceptable.

“There are things that are important and need to be dealt with
immediately... work, family stuff. (9–S–P)”

5.3.2.7 Influence on Group Dynamics

Our participants reported that the composition of the conversation group and
its size highly influenced the handling of possible interruptions. Conversations
involving only two participants, as the one explored in our study, were considered
most sensitive to interruptions and prompted immediate reactions:

“It was very impolite when the conversation partner looked at the
phone. I wanted to say something. (5–S–P)”

Larger groups seemed to offer more leeway in interacting with a phone. One
participant commented on how a bigger group enabled a limited amount of
interruption:

“It’s also not okay in a group, but a bit more okay (than in a one-to-
one conversation). (9–S–NP)”

Finally, participants saw putting one’s phone away as a sign of appreciating the
other parties in the conversation and deeming the social activity interesting:

“If one’s having a good conversation, the phone should be put away
entirely. (9–S–P)”

5.3.3 Discussion

We investigated whether SurfaceSliding was less intrusive and how the design
can be improved in the future. The presented findings will help to improve
SurfaceSliding as well as designers to build less disruptive ubiquitous systems.
As we discuss the quantitative eye-tracking data showed a reduced disruption

116 5 | Social Implications



when using SurfaceSliding. The qualitative results discussed highlights further
improvements. Furthermore, the lessons learned to foster discussions about the
social acceptability of disruptions through technologies, in general.

5.3.3.1 Around Device interaction

The eye tracking data indicates that participants paid significantly more attention
to their interlocutors when using SurfaceSliding. Therefore, we can conclude
that our technique provides an effective and non-interrupting way to decline calls
in-conversation. In the light of the analysis by Vertegaal et al. [169], it can be
inferred that participants in the SurfaceSliding condition were more engaged in
the conversations than the participants using the current default method. This
fact suggests that design space for creating new non-disruptive techniques for
managing attention should be explored further. SurfaceSliding provides a working
example of how in-conversation interruptions can be effectively reduced. The
fact that none of the participants grabbed the phone in their hand during the study
suggests that they were comfortable with interacting with the device while it
was lying on table. This confirms previous work on spatial interaction pattern
for on-surface mobile devices [186]. While past work has shown that sliding
mobile devices on surfaces can be effective for complex task and long interaction
periods, SurfaceSliding illustrates that moving along a horizontal surface can also
be effective for short, atomic tasks.

5.3.3.2 Addressing Complete Designs

As it surfaced in the interviews, the participants expected they would be able
to choose the direction of the sliding. We recognize that this improvement may
render our technique more effective. However, this require extensive sensing of
the user’s body position or an explicit set-up phase before using SurfaceSliding.
Further, participants may confuse directions, which increase error rates. These
facts showcase that a more explorative approach not limited to two techniques
may have generated more feedback. However, that providing the participants with
an experience of declining the call, irrespective of the details of the technique,
triggered valuable on-the-spot feedback.

5.3 | Study 1: SurfaceSliding 117



5.3.3.3 Strict Users

We observed that there is a user group strictly opposed to phones entering con-
versations. These participants find placing the phone on the table unacceptable
and answering calls during conversation is offensive to them. We believe that
future systems should offer more support for this user group. For instance, a user
should conveniently be able to inform other participants in the conversation that
they do not wish that phone to be part of the experience. This could be achieved
by a setting in the user’s device that is communicated to other devices. Further-
more, that specific user group requires an easy means to deactivate phone output
during a conversation. If future mobile devices are able to sense conversations,
this user group would require all disturbing features to be deactivated. Overall,
future mobile devices should provide participants with effective means to both
deactivate disturbing features in their phones and inform other participants that
they do not wish to be disturbed. However, as the strict users only represent
part of the user base future systems will also need to provide opportunities to
negotiate behaviors, especially in intercultural settings. Our approach, however,
is not suited to designing with and for those participants.

5.3.3.4 Emergency Cases

Nearly all of the participants reflected that, despite their wish to limit interruptions,
designs should account for emergency cases. Participants noted that there are
exceptions where interruptions are acceptable. If future systems are to offer better
management of in-conversation interruptions, they must incorporate the means to
prioritize emergencies. While current systems do include some means to deal with
emergencies (e.g. in iOS, the do not disturb mode can be deactivated when the
participants receive repeated calls), more extensive features are required. Again,
our study participants reflected that determining what constituted an emergency
highly dependents on the context. For instance, while on holiday, calls from work
are likely to be emergencies, and a mid-day call from the school may require the
immediate attention of the parent. Designers of future mobile devices should help
participants define possible emergencies and use context sensing efficiently to
ensure interruptions are efficient exceptional circumstances.
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5.3.3.5 Accounting for Changing Context

We noticed that our participants often remarked that the decision on whether
attending to an event or information was worth interrupting a conversation depends
on many factors. In a way, deciding whether to answer a call or message during a
conversation is an economic decision. There is a certain social cost associated
with answering the call, which is dependent on the context of the conversation.
There is also the social cost of possibly ignoring an important call or missing a
social interaction. Each time the user decides to accept or decline, they make a
conscious decision, yet current mobile devices only offer the identity of the caller
as a potential aid in making an informed choice. Further, participants reported that
they not only consider who is calling them when deciding whether to answer the
call; they also considered the context of the conversation and the possible purpose
of the incoming call. There is an emergent need for mobile devices to adapt
to the richer context. Our approach uses static measures that require stationary
equipment and thus it is not particularly suited for studying how disruptiveness
is affected by change of usage context. We recognise that the majority of the
participants in our study expressed that their acceptance of interruptions varied
depending on the context of usage. The composition of the conversational group or
the purpose of the conversation affected the level of interruption that was deemed
acceptable. While our approach allows the experimenter to freely introduce a
context, the static setting of the discussion task renders switching social contexts
difficult.

5.3.3.6 Summary

We presented two studies where we investigated techniques for declining calls in
a face-to-face conversation. We were able to revisit the conversation and draw
conclusions from the participants’ behavior using video and audio recordings.
Using our approach enabled us to understand the impact of a new interaction
technique on disruptiveness. Eye tracking revealed a significant drop in time
spent looking on the phone when using the new technique. Interviews provided
evidence for underlining social mechanics that affect disruptions.
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(a) Touch Phase

Incoming Call

(b) Movement Phase

Incoming Call

(c) Selection Phase

Incoming Call

Figure 5.6: Declining an incoming call selection phase using finger orientation interface.

In the first step (a) the user taps the center icon and then (b) changing the yaw of

the finger in order to move the selection icon twards the decline button, finally (c) the

release of the finger will trigger the highlighted action.

5.4 Study 2: Finger Orientation

In the following, we investigate how finger orientation affects social settings.
Therefore, we use again our mixed-method approach in a face-to-face conver-
sation, see Figure 5.7. Again we used the incoming call scenario to distract the
conversion and make user of finger orientation to decline to calls. Thus, we
present a second showcase on how the new mixed method works and therefore
evaluate finger orientation.

5.4.1 Study

We compared a standard decline a call technique against a finger orientation
declining method using the same setup as described in Section 5.3. The study
had a between-groups design with a single independent variable, TECHNIQUE.
Again, in the Touch condition, the participant with the phone got a standard
Android incoming call interface, the interaction is presented in Figure 5.3. In
the FingerOrientation condition, the phone was modified so that the participant
could use the finger orientation to reject the calls. The interaction technique is
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Figure 5.7: The study setup showing one participant wearing mobile eye tracker.

illustrated in Figure 5.6. In line with our example study see Section 5.3, only one
participant needed to interact with the phone, we will refer to them as HasPhone
and NoPhone.

5.4.1.1 Apparatus

The hardware setup we used, was the same as described in Section 5.3. We used
the same implementation of the Touch condition. However, for the FingerOrien-
tation condition, we used a Wizard-of-Oz approach to not influence the results
by an imperfect implementation. Therefore, one of the two experimenter used an
extra tablet to input the yaw values. In contrast to the example study (Section 5.3),
we reduced the distance between the participants to improve the recognition rate
of the QR code markers.

5.4.1.2 Procedure

The procedure was in line with the one reported in Section 5.3, participants were
guided through the whole study by two researchers. First, they where interview
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separately. Second, participants where played back the discussion instructions
from CAE [29]. Lastly, they where again interview separately about how the
discussion went and how the incoming called and the interaction influenced the
discussion.

5.4.1.3 Participants

We recruited participants from our university’s volunteer pool. In total, 24 partici-
pants took part in the study (16 male, and 8 female). The age range was between
20 and 35 years (M = 23.3, SD = 3.7). All of them had either no visual impair-
ment or corrected to normal vision by wearing contact lenses. We reimbursed the
participants with 10e.

5.4.2 Results

In this section, we present the results of our example study in which we compared a
standard decline a call technique with FingerOrientation. We show how engaging
users in a conversation task allowed us to statistically determine which interaction
technique was less disruptive and how the interview results allow us identified
possible future design improvements.

5.4.2.1 Eye Tracking Data

We first used the built-in QR code plug-in of the eye tracker to recognize where
the participants looked. The results of how long the participants looked on average
at the phone in relation to the conversation length is presented in Figure 5.5. A
two-way ANOVA revealed a statistically significant difference between the Phone
and the NoPhone conditions F1,20 = 7.155, p = .015. However, we found no
significant difference between the Touch and the FingerOrientation conditions
F1,20 = .007, p = .934. Further, we found no significant interaction effect (F1,20 =

.066, p = .799).

5.4.2.2 Phone Log Data

To understand if the reaction time as well as the interaction time changes when us-
ing FingerOrientation as declining method we conducted two one-way ANOVAs.
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Figure 5.8: The average percentages of looking at the phone during the discussion

and standard error for TECHNIQUE × PHONE.

We found no significant difference between the Touch and the FingerOrientation
conditions for the reaction time F1,10 = .001, p = .999, see Figure 5.9a. We found
no significant difference between the Touch and the FingerOrientation conditions
for the interaction time F1,10 = .118, p = .739. Participants in the Touch condition
interacted with the phone for the shorter period of time (M = 1.1s, SD = .2) than
the FingerOrientation condition for M = 1.2s (SD = .7), see Figure 5.9b.

5.4.3 Discussion

We conducted a study with 12 pairs of participants in a simulated coffee house
scenario to investigate if there is a change in conversation disruption when finger
orientation instead of normal touch interaction is used. We conducted the study
as proposed in Section 5.2. Moreover, the overall study setup was similar to the
study presented in Section 5.3.
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Figure 5.9: (a) Showing the average reaction time (TCT-R) between incoming call

highlight and a participant touched the phone. (b) Showing the average interaction time

to decline a call.

In line with the results of the study presented in Section 5.3 the participant
without a phone looked significantly less on the phone then the participant with
the phone. However, finger orientation interaction did not significantly decrees
or increases the time looked on the phone. Thus, this indicated that there is no
difference in disruptiveness. The further stress this with analyzing the phone logs.
Here, we revealed no difference in reaction time and no difference in interaction
time with the phone. Thus, we argue that in cases where designers need more
dimensions to interact with the phone, they can used finger orientation without
risking to disrupt conversions with there implementation.
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5.5 Advantages of the Mixed-Method Approach

Participants interpreted the phone as an unnecessary distraction to the conver-
sation, showing the dilemma of notifications caused by technologies in general.
However, today’s smart device participants rely on notifications. Conducting the
two studies enables us to reflect on the properties of our mixed-method approach.
In the following, we discuss the applicability of our mixed-method approach
for new technologies and new interaction techniques. We further discuss how
eye tracking enables a rapid decision on which technology is less disruptive
while the interviews complement the choice of technology and point out further
improvements.

5.5.1 Rapid Answers

Our first study showed a clear result in terms of which studied interaction tech-
nique is superior. The eye tracking data showed a significant effect which strongly
indicates that SurfaceSliding causes less disruption than the baseline technique.
This shows that our approach is well suited to fit in a design process. The fast
quantitative analysis can be used for quick A/B testing during design sprints for
rapid evaluation of interaction techniques. This is in contrast to past approaches
such as conversation analysis. Once a superior technique is determined, designers
can use the qualitative feedback to stimulate further refinements of the interac-
tion technique. A study that offers meaningful feedback can be conducted and
analyzed within a day for a number of participants.

5.5.2 Focused, on-the-spot Feedback

The conducted studies showed that our approach managed to trigger extensive
reactions in the participants. We believe that contextualizing the interview ques-
tions enabled the participants to reflect extensively on the disruptiveness caused
by interruption techniques. The discussion task served as a kind of priming before
the final interviews. We theorize that the extensive material we obtained was
partly provoked by the direct experience of being engaged in a discussion. We
believe that the fact that participants are interviewed directly after a discussion
facilitates focusing specifically on the disruption caused by the technology and
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imagine how the discussion could be shaped had the technology been different.
As only one of each pair of participants is tasked with using the phone, designers
are able to obtain a first-hand account of how one attempts to limit the disruption
caused to the interlocutor while using a particular interaction technique. This
contributes to building the ecological validity of our method.

5.5.3 Designing with the Social Context in Mind

It is worth noting that some participants were willing to sacrifice some degree
of their social engagement for better awareness of the events communicated
through their phone. For instance, more interruptions can be acceptable in a
personal conversation when one intends to be informed about the current score in
an important football match. Such situations produce opportunities for designers
to intervene and create tools for personalized interruption rules, which could act
like the mobile version of an email filter. While we used a neutral discussion task
without any distractions, our approach easily enables modifying the context of the
disruption. One can alter the pre-study briefings provided to the user or introduce
additional distractors in the study room. Further, we recognize that while we
suggest a quick qualitative analysis and subsequent iteration, our approach can
potentially offer deeper insights if more detailed analysis is performed.

5.5.4 Potential for a Generative Role

As the participants were engaged directly in a discussion, the reactions triggered
by the prototypes studied can be reflected upon immediately. In the final interview,
participants can directly reflect on particular disruption caused by particular
actions. In later stages of the design process, such accounts enable designers to
understand the details of the disruptiveness caused by the prototype and stimulate
participants to provide generative feedback. As the participants can easily recall
the discussion task, our approach facilitates discussing alternative techniques or
usage contexts. Further, for techniques that require bodily movements the direct
engagement with the mobile device makes participants more likely to imagine
real-life scenarios. Past work has shown that direct physical engagement with
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low-fidelity prototypes in social contexts can be particularly beneficial in a design
process [163]. Thus, we believe our method can be applied to a variety of design
contexts and constitute a rapid and versatile formative evaluation tool.

5.6 Limitations of the Mixed-Method Approach

We also recognize that the new technologies which are studied by the researchers
may effect the participant’s behavior. In our studies, modifying the user’s smart-
phones would have rendered the study technically unfeasible. Furthermore, as our
study investigates a new interaction technique, using multiple smartphone models
may play a role in the social acceptance of the interactions. However, using
one model guaranteed consistency between the studied groups. Furthermore, the
required measurement infrastructure in the study setup itself might influence the
participant’s behavior. In future work, the influence of wearing an eye tracker and
the surrounding infrastructure should be analyzed.

The proposed mixed-method approach is designed to evaluate the distinctive-
ness in social settings. In detail, we focus on two-people, face-to-face discussions.
We believe that the proposed method is also applicable for social settings involv-
ing more persons. However, applying our mixed-method approach to a setting
with more people needs to be investigated first.

5.7 Summary

In this chapter, we first did an analysis to understand how to study new interaction
techniques in social settings. We then developed a study plan based on the
requirements. In an example study we showed how the new mixed-method
approach can deliver insights on two level. First the mixed-method approach
provides the experimenter with a quick A-B test to understand if one interaction
technique is less disruptive using eye-tracking data. Second the approach delivers
new insights about the interaction and general behavior of the participants within
the interaction. This can foster a new iteration in the design circle.

In our example study, we studied a new call declining method in a face-
to-face conversation. The new call declining method SurfaceSliding works by
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sliding the whole phone in the direction of the smartphone in contracts to the
standard Android interface where a icon needs to be dragged on the screen
itself. Participants where asked to have a conversation for 10min while one
participant had the modified phone and received 8 calls during the 10min. The
analysis first relieved that SurfaceSliding is less disruptive to both the participant
with the phone was well without the phone. Moreover, the interviews reviled
how SurfaceSliding can be improved further in a next design iteration, but also
uncovered how humans today are mixed between how they handle there phones
in conversations in general.

In the second half of the chapter, we finally where able to address RQ3:
“Which social implications has using finger orientation as an additional input?”
Here, we used the new mixed-method approach to study how finger orientation
interaction would effect face-to-face conversations. Therefore we implemented
a caller where the yaw of the finger is mapped to the selection icon, similar to a
pie menu. We used the same study setup and set of interview questions as in the
example study so compare them. We found no difference in disruptiveness, which
is positive as one can hypothesize that finger orientation input in general leads to
more arm movements. However, due to the interviews the we got feedback and
insights on how to improve finger orientation in a pie menu selection task in the
future.

As we recognize that our studies are constrained by the fact that it was
conducted in a lab setting, we hope that using our approach will be complemented
by other studies that use alternative methods such as in-the-wild deployments of
new interaction techniques. We also believe that an ethnographic study of the
social acceptability of smartphone interruptions in public settings such as cafés or
libraries will produce interesting insights for design. We hope that our work will
inspire further developments and the creation of enhanced evaluation methods for
future interaction techniques.
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6
Discoverability

To understand how finger orientation input should be presented to the user (RQ4),
we investigate how to communicate novel input techniques for smartphones in the
following chapter. Through interviews with 12 UX experts, we identified three
potential approaches: Depiction uses an icon to visualize the input technique,
Pop-up shows a modal dialog when the input technique is available, and Tutorial
explains all available input techniques in a centralized way. To understand which
approach is most preferred by users we conducted a study with 36 participants
that introduced novel techniques using one of the communication methods. While
Depiction was preferred, we found that the approach should be selected based on
the complexity of the interaction, novelty to the user, and the device size.

Parts of this chapter are based on the following publications:

S. Mayer, L. Lischke, A. Lanksweirt, H. V. Le, and N. Henze. “How to Communicate New
Input Techniques.” In: Proceedings of the 10th Nordic Conference on Human-Computer
Interaction. NordiCHI ’18. Oslo, Norway: ACM, 2018, pp. 460–472. ISBN: 978-1-4503-
6437-9. DOI: 10.1145/3240167.3240176
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6.1 State-of-the-Art Communication Approaches

A number of input techniques beyond a single touch including force touch and
gesture shortcuts are possible on touchscreen devices. However, they are not
widely used, often unknown to users, and not well communicated. Recent re-
search proposed further input techniques to enlarge the input space of today’s
touch devices, including finger-aware input [21], phone squeeze input [68], BoD
interaction [27], finger orientation input. While some of these techniques are
already available for commercial devices, none have become widely used.

As system’s functions have to be learned they are not always obvious. As
shown by Müller et al. [134], a visual cue that highlights input possibilities
significantly increases how often people interact with a system. Moreover, both
Shneiderman et al. [160] and Norman [138] argue for the discoverability of
interaction and indeed we see many ways to help users to understand new input
techniques. Hover effects are, for example, a common way to communicate the
possibility to click a button. More complex interactions are harder to communicate.
With Word 1997, Microsoft introduced Clippy, a virtual assistant that provided
in-situ help for text processing by highlighting possible actions. Clippy was
removed six years later and is considered a classic example of how not to foster
discoverability [149].

As the affordance of input techniques for touchscreens that go beyond simple
touch interaction is limited, novel input techniques for touchscreens must be
communicated. The most common approach to introduce novel input techniques
is through the GUI. Today, Apple use the “Tips” app to explain how all features
of the iOS eco-system work. In cases of an update, Apple triggers notifications to
advise users that they can learn about new features in the “Tips” app. On their U11
smartphones, HTC informs users about “Edge Sense” during the device setup
and additionally shows a pop-up whenever edge sense can be used within an app.
While Apple’s “Tips” app and HTC’s device setup enable users to understand
how to use new input techniques, true discoverability in the sense of Shneiderman
et al. [160] and Norman [138] is not achieved. They both argue that a function
should be self-explanatory and new input techniques should seamlessly be learned
while using the device.
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This chapter seeks to understand how user experience (UX) experts envision
to communicate input techniques beyond a single touch. Moreover, we aim to
understand which communication method is preferred by users. Therefore, we
conducted design sessions with UX experts. We asked them how they envision en-
abling discoverability. We found that designers were split between three different
approaches to communicate new input techniques: a) Depiction, an approach sim-
ilar to Shneiderman et al. [160] that highlights available input technique through
icons; b) a Pop-up which informs users about available input techniques whenever
a new one is available; and c) the Tutorial which explains all input techniques in
a centralized way. We evaluated the three approaches using five different tasks.
In each task, the user needed to use a different novel input technique, namely:
Finger Orientation Interaction, Finger Roll Interaction, Nail/Knuckle Interaction,
and Finger-Aware Interaction. We found that participants preferred Depiction
over both Pop-ups and the Tutorial.

6.2 Alternative Interaction Techniques

In the follwoing, we highlight four novel input techniques which potentially
will make it into consumer devices in the near future. In our studies, the four
techniques form the foundation to study ways for communicating novel input
techniques. All four have been studied in detail in previous work but are not
available for consumer devices: Finger Orientation Interaction, Finger Roll
Interaction, Nail/Knuckle Interaction, and Finger-Aware Interaction.

6.2.1 Finger Roll Interaction

Roudaut et al. [151] proposed using the roll of the finger for input. They envision
a circular clockwise / counterclockwise input by rolling the finger to the side.
They argue that the circular gesture can be used to access hidden menus. Huang
et al. [73] used the finger roll to implement a keyboard on a smartwatch.

Roudaut et al. [151] distinguish between taps, strokes and roll inputs by
analyzing the trajectory of the touch input. Hernandez-Rebollar et al. [63, 64]
used six dual-axis accelerometers attached to the fingers to track the position and
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the roll of the fingers. Huang et al. [73] also used inertial measurement sensors to
implement a keyboard that assigns different characters to different areas of users’
finger pads contacting the touchscreen.

6.2.2 Nail/Knuckle Interaction

The most prominent work regarding nail/knuckle interaction is by Harrison et
al. [58]. They envision using a normal tap as one input and further distinguish
between knuckle, nail and fingertip. Lopes et al. [108] use different hand gestures
for actions such as copying, pasting and deleting objects on a tabletop. Lastly,
Hsiu et al. [72] used nail deformation as an indirect measurement to estimate the
“force” on the touchscreen.

Harrison et al. [58] identify the different inputs based on changes in the
acoustical spectrogram retrieved from conventional medical stethoscope with an
electret microphone. In contrast, Lopes et al. [108] use the sound of the gesture for
input identification. They used the the characteristics of the amplitude envelope
and the fundamental frequency to detect different interactions.

6.2.3 Finger-Aware Interaction

Finger-aware interaction is mostly used with a specific finger as a modifier of
a touch event, allowing different fingers to be responsible for different actions.
Colley and Häkkilä [21] used finger-aware interaction to map different functions
onto the fingers themselves. For instance, they envisioned navigating the contact
app with different fingers, e.g., opening a contact using the index finger and
making a call by tapping the contact with the thumb. Gupta and Balakrishnan [55]
implemented a smartwatch keyboard which makes uses of finger-aware interaction
by mapping two characters to one key, and depending on the finger used one of
the two characters is sent to the application layer. Gupta et al. [54] proposed
“Porous Interfaces”. Two applications are stacked on top of each other with a
semi-transparent front layer. They envisioned an interaction where one finger
can interact with the front application and another with the application in the
background.

Finger identification approaches that attach sensors to the user generally yield
the best recognition rate. A large body of work applied infrared sensing from
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beneath a tabletop for finger-aware interaction [1, 31, 41]. Gupta et al. [54, 55]
used infrared sensors mounted on different fingers to identify touches made by the
index and middle finger. Similarly, Masson et al. [115] based their recognition on
touchpads using vibration sensors attached to the user’s finger. Further approaches
include using electromyography [4], gloves [113] and RFID tags [168]. Another
approach uses cameras to identify touches from different fingers. Researchers
predominantly used a combination of RGB cameras and computer vision for
detection [174, 190].

6.3 Design Sessions

To explore ways to communicate new input techniques to the user, we conducted
an interview series with 12 UX experts. We recruited the experts (9 male and 3
female) from two leading design universities and one institute focusing on HCI.
All interviews were audio recorded for later analysis. For the assessment of the
four input techniques, we used a Latin square design to balance the order.

6.3.1 Procedure

After the experts were welcomed, they were asked to sign a consent form and fill
in a questionnaire about demographics. Then we introduced them to the interview
and explained its overall intent: “How should a touchscreen system introduce new
input techniques?” Participants had the chance to ask questions throughout the
study. After the general introduction, we informed the participants about the four
input techniques using a slideshow, namely: Nail/Knuckle Interaction, Finger
Orientation Interaction, Finger Roll Interaction, and Finger-Aware Interaction,
see Figure 6.1. For each input technique we had an idea creation phase where
we asked the experts to imagine how the input techniques could be used in the
mobile devices’ most popular types of applications [9], such as instant messaging,
browsing, and email apps.

After the idea creation session we interviewed the experts in depth on each of
the four input techniques. Following this they each chose one of their use-cases
for a more in-depth interview comprising 13 questions to ensure good designs as
laid out in the “Eight Golden Rules” by Shneiderman et al. [160] and the “Seven
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(a) Finger Orientation (b) Finger Roll (c) Nail

(d) Knuckle (e) Finger-Aware

Figure 6.1: The input techniques which were used to study possible communication

patters for novel input techniques: Finger Orientation Interaction, Finger Roll Interaction,

Nail/Knuckle Interaction, and Finger-Aware Interaction.

Fundamental Design Principles” by Don Norman [138]. For each input technique,
we gave the experts a sheet of paper with five designated sections for drawings,
labeled (1) pre interaction, (2) interaction possibilities, (3) during the interaction,
(4) after the interaction, and (5) possible error stats. We asked the experts to use
the sections they needed to sketch their ideas.

We wrapped up the interview with final remarks and answered remaining
questions. Lastly, we thanked the experts for their participation in our expert
interview and reimbursed them with 10e.
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6.3.2 Results

We conducted 12 expert interviews with a total length of 1,005min (M = 83.3min,
SD = 7.2, Min = 60, Max = 120). We transcribed all interviews and coded them
using Atlas.ti1. We transcribed the interview literally while not summarizing or
transcribing phonetically. However, we transcribed pauses of greater than one
second to understand the conversation further. This technique is known to offer
a subjective experience [7]. Next, three researchers coded one interview of the
material to establish an initial coding tree. A single researcher coded the rest of
the data. Finally, we employed a simplified version of qualitative coding with
affinity diagramming [57] for interview analysis as this offers a rapid way to
analyze and understand the feedback provided by interviews. In the following, we
first present insightful comments from the idea creation session and then about
the four discussed input techniques. To relate opinions, we name the experts E1
to E12. A set of sketches drawn by the experts is shown in Figure 6.2.

Summarizing how the experts rated the intuitiveness of the input techniques,
only 3 experts considered Nail/Knuckle Interaction as the most intuitive input
technique, followed by the Finger Roll Interaction where 6 experts found them
to be generally intuitive. Lastly, both Finger Orientation and Finger-Aware
Interaction was found to be generally intuitive by 7 experts.

6.3.2.1 Finger Orientation Interaction

As discussed earlier, finger orientation input has, unlike the other input techniques,
two dimensions, which can be changed at the same time. Further, in previous
research, finger orientation has often been studied as a single input technique.
This is reflected in the interviews. Experts either used it as a combined input
techniques where two parameters can be changed at the same time or as two
independent operations.

The experts envisioned using Finger Orientation Interaction for several use
cases. They generally considered the input technique to be mainly useful for
manipulating views. Manipulations such as zooming, which today is typically
realized using two fingers, can be substituted using the orientation of the finger.

1http://atlasti.com/de/produkt/v7-windows/
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Here, zooming (E1, E3, E6, E11) and scrolling (E4, E5, E6, E9) were named
as examples for fundamental input techniques. Further, manipulating a 3D view
as a more complex use case was envisioned (E2, E5, E7, E8). It could be, for
example, used to manipulate an object or to zoom and rotate a map at the same
time. Furthermore, E10 imagined changing values by changing the orientation
of a finger. Thereby, the user could select dates in a calendar using the pitch of
the finger. Similarly, E1-E4 envisioned setting the time or a timer using the yaw
of the finger. The experts also imagined accessing different shortcuts with each
angle of the finger (E3, E6, E9, E12) or mapping it to a brush type or a brush size
(E5, E8) in a drawing application. E1 and E10 proposed using uncomfortable
finger orientations for safety-critical actions, e.g., factory reset.

Eight experts considered pop-ups to be an appropriate way for communicating
the input technique to users (E1, E2, E4-E6, E8, E11, E12). Moreover, E10
suggested a more intuitive way to communicate the input technique, where the
user is guided by an interactive animation to learn how the new input technique
works. Furthermore, E5 and E11 suggested using a tutorial to explain the input
techniques. Using icons to visualize the new input technique, thus following the
depiction method, was mentioned by E3.

The experts generally agreed that smartphones are well-suited for implement-
ing finger orientation input. Five highlighted that finger orientation is also well
suited for input on smartwatches; on the other hand, finger orientation on tablets
was only highlighted three times. Additionally, E9 stated that finger orientation
input should always be implemented as a relative input, as performing absolute
angles is difficult for users.

6.3.2.2 Finger Roll Interaction

Experts considered Finger Roll Interaction to be useful for switching between
views (E1, E4-E9); either to switch between apps or in an app switch between
views. As in-app use cases, the experts proposed moving between one messenger
conversation and another or to flip pages in an ebook. Switching between views
using roll input could also be used to manipulate GUI elements such as a “Switch”
or toggle button (E1, E4-E9). This switching function could also be implemented
as a scrolling function according to 3 experts (E2, E9, E12). On the other hand,
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(a) Nail Icon (b) Knuckle Icon

(c) Finger-Aware Drawing

(d) Finger Orientation Alarm (e) Finger Roll Gallery

Figure 6.2: Sketches drawn by the experts during the interview to underline their

strategies for their use cases. (a) and (b) present possible depiction icons to guide the

user to use their nail or knuckle as input. (c) - (d) present three different use cases

each for one input technique.
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again experts made use of rolling as a continuous input for GUI elements such
as adjusting a thermostat (E10) or to set a position on a slider as used for music
and video player manipulation (E2). Further, two experts (E3 and E8) envisioned
the Finger Roll Interaction to control games. Lastly, a shortcut menu similar to
Roudaut et al. [151] was mentioned by E6.

The experts proposed two basic approaches for communicating Finger Roll
Interaction to users: (1) using a pop-up and (2) using an icon that depicts the
interaction. Here, E1, E4-E9, E11, and E12 suggested using pop-ups. E2, E3,
E8, E10 suggested depiction to communication the interaction. The experts
envisioned using an icon combined with a specific way of guiding the user to
the interaction. For the guidance, the experts envisioned a transformation of
the touched object whenever a Finger Roll Interaction is possible. For instance,
E2 suggested transforming the “play” button in a music app into a slider when
skimming through the song is possible using Finger Roll Interaction.

The experts generally envisioned Finger Roll Interaction to be used on all
screen sizes. However, E5 and E8 had concerns in regards to using Finger Roll
Interaction on smartwatches.

6.3.2.3 Nail/Knuckle Interaction

In contrast to Finger Orientation and Finger Roll, this interaction uses categorical
input rather than continuous input dimensions. This led to two different types of
actions in the interviews. However, the actual use of nail or knuckle can easily
be applied to the other input techniques. Most of the experts stated that input
technique could be implemented for system-wide actions.

All experts saw nail and knuckle input as a perfect solution for shortcuts, such
as taking a screenshot (E1, E4-E8, E11, E12), undo (E2, E3, E8), marking mail
as spam (E9), snoozing of the alarm (E7), and within music applications (E10).
Furthermore, the input technique could be used to select multiple objects and for
scrolling, similar to finger-aware interaction (E2). Nail and knuckle input was
further envisioned for unlocking or turning on the screen using a knock (E8, E9)
and opening the context menu (E1, E4). E3 would use the input for safety-critical
input like a factory reset. E4 had the idea to replace already existing functions
like long-press replacement.
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Experts generally agreed on two ways to communicate the new interaction;
first, by showing a pop-up, when the interaction is available for the first time.
However, as most of the proposed use cases are system-wide operations, the
experts also proposed explaining the input technique during the setup of the
device in a tutorial.

Four experts stated that whenever a special action is triggered visual feedback
to the user would be beneficial. Four experts proposed a growing wave similar
to the pattern a drop produces on a water surface. Furthermore, experts see
the usefulness of nail and knuckle interaction as rather limited. Four experts
considered the input technique to be useful for all touchscreen devices, two only
for smartphones, and one for tablets. Lastly, two experts (E2, E9) argued that
there might be problems in using the nail input with long nails and that this should
be studied independently.

6.3.2.4 Finger-Aware Interaction

Experts proposed finger-specific shortcuts (E2-E4, E8, E10, E12) for certain apps
such as calendars (E2, E4, E10) or to stop an alarm (E2). They also proposed
different tones for each finger in a piano application (E10). Three experts (E3, E10,
E12) saw a benefit for drawing apps. They envisioned two different approaches,
either to map a different color to each finger or to map different brushes to each
finger. Another area was the text editing domain. E1 and E6 envisioned copy and
paste using two dedicated fingers, and E7 proposed enhancing caret positioning
using finger-aware input. A specific finger could be used to select whole words,
unlike today’s implementation of caret manipulation. E8 and E9 envisioned
using a specific finger open a system-wide context menu. On the other hand,
multi-finger shortcuts have been proposed for app switching similar to the iOS
implementation (E4). E4 and E5 see a benefit for finger-aware interaction on
keyboards, where for example italic text could be realized using one finger, or
one finger used to enter the second layer of characters on each key to substitute
the long-press. Both E2 and E11 proposed a GUI element with a maximum of
five options, one per finger. They envision this to be similar to a slider, without
taking up the space on the screen to fit a long slider widget.
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The majority of the experts drew a hand like a symbol to communicate the dif-
ferent option per finger to the user. However, they again used the representations
in different ways to explain the finger-aware interaction to the user. Six experts
(E1, E4, E6, E9, E11, E12) stated they would use icons with text to communicate
the interaction, with the two options of when the device is getting set up or when
the interaction is available for the first time pop-ups. E2, E3, E5, E7, E8, and
E10 preferred a depiction as the form of communication. Moreover, three of the
experts stated that they would see the benefit of finger-aware interaction for larger
screens (E5, E7, E9).

6.3.3 Discussion

To understand how UX experts would design ways to communicate new input
techniques, we asked them which use cases they envisioned and how they would
communicate the input techniques to users. We asked them to envision use
cases for the following four input techniques: Nail/Knuckle Interaction, Finger
Orientation Interaction, Finger Roll Interaction, and Finger-Aware Interaction.
They did so, then each elaborated on their favorite use case in-depth. They
envisioned how this use case would work with the new input technique and how
they would communicate this to users.

We found that experts are split between three methods to introduce a new
input technique. The most common method was to use Pop-ups whenever a new
input technique is available. Second, we found that for interaction techniques
which they found to be intuitive they suggested using less obtrusive Depiction
(e.g. icons) to communicate a new technique. Last, the experts suggested using
an introduction during device setup using a Tutorial where the user is guided
through a process and the option to revisit the tutorial as in the iPhone’s “Tips”
app. The results of the design session showed that the experts envisioned a wide
variety of use cases but focused on three different methods to communicate new
input techniques to users. They would choose a given method on the basis of how
intuitive they considered the input technique to be. In the following, we compare
the three communication patterns: Depiction, Pop-up, and Tutorial using a study
where users are asked to learn and to perform the new input techniques.
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Depiction: a small icon next to the element of interest in the GUI depicting
the available input techniques. The depiction is intended to work without
additional textual explanations.

Pop-up: a modal dialog which appears the first time an input technique is
available in the next view. The pop-up contains a textual description and
visual depiction.

Tutorial: an introduction into all new input techniques at once, either when the
input technique becomes available through an update or when setting up
the device, again, using a combination of textual description and depiction.

6.4 Evaluation

Based on the findings from the interview series, we designed a lab study in which
we compared the three communication methods Depiction, Pop-up, and Tutorial
with regards to their UX.

6.4.1 Study Design

We conducted a lab study to compare the three methods for communicating
new input techniques proposed by the UX experts. Namely we compare the
COMMUNICATIONPATTERNS: Depiction, Pop-up, and Tutorial, see Figure 6.3.
We prototyped five different TASKS: Alarm, Chat, Drawing, Gallery, and Map,
see Figure 6.4. To minimize the influence of unreliable novel implementations
of the discussed touchscreen-based input techniques we used a Wizard-of-Oz
study design [25]. We conducted the study with COMMUNICATIONPATTERNS as
a between-subjects variable while TASKS was a within-subjects variable. This
ensures that no participants had experience of new input techniques with multiple
COMMUNICATIONPATTERNS. We used the system usability scale (SUS) [13], the
AttrakDiff [59] questionnaire, and three open questions as depended variables.

In the Chat task, the participant had the option to use Nail/Knuckle Interaction
to enrich the interaction. To cover the Finger Orientation Interaction we added
two separate tasks to enable the wizard to recognize the movement accurately. In
the Alarm task, participants had to rotate the finger around the yaw axis to change
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(a) Depiction (b) Pop-up (c) Tutorial

Figure 6.3: The three different COMMUNICATIONPATTERNS which were proposed by

the experts in the design session.

the time. In the Map task, the pitch of the finger manipulates a map view. In the
Gallery task, Finger Roll Interaction is used to scroll through images. Finally,
Finger-Aware Interaction is used for a Drawing application, where each finger is
mapped to a different color.

6.4.2 Apparatus

We used a Nexus 5X Android smartphone for the participants to learn and perform
the new input techniques and a Nexus 7 for the wizard. Bluetooth was used to
send the commands from the wizard to the smartphone used by the participants.
We audio recorded the participants’ responses to the open questions. Further, we
recorded the whole study using a GoPro Hero3+.

Alarm task: participants were asked to set five different times by changing
the yaw orientation of their finger while touching the screen: Clockwise rotation
increased the time. The input technique was realized as a relative input always
starting from the last value. For the Depiction condition, we displayed an icon with
two curved arrows around the finger as proposed by the experts, see Figure 6.4a.
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(a) Alarm
(b) Chat (c) Gallery (d) Map

(e) Drawing

Figure 6.4: The five different TASKS used in the evaluation study.

Chat task: we implemented shortcuts as proposed by the experts. Touching a
text using the nail copied the text and touching with the knuckle pasted the text
from the clipboard. The task was to agree to terms and conditions by pasting
“I have read the Terms and Conditions” into a text field word by word. Experts
proposed depicting the nail and knuckle, see Figure 6.4b for the icons used in this
task.

Drawing task: participants were asked to draw a scene from their last vacation,
a meal, a car, a pet and an island. Participants were further asked to use at least
three different colors. Each color was assigned to one finger; the color assignment
being shown by a small hand icon, see Figure 6.4e. By touching the hand
participants were able to remap and change colors.

6.4 | Evaluation 143



Gallery task: participants were asked to find five specific images in a gallery
containing the 100 image1 using Finger Roll Interaction. Scrolling through the
images was possible by rolling the finger and visualized with an arrow over an
fingertip, see Figure 6.4c. The position of the Finger Roll Interaction was not
taken into account. The target images were printed on paper.

Map task: participants were asked to use a map for finding six cities, each
on a different continent. Moving the map was possible through panning with the
finger, while zooming in and out of the map was realized by changing the pitch of
the finger while still touching the screen. This again was visualized by an icon
representing the finger and its pitch in relation to the device, see Figure 6.4d.

6.4.3 Procedure

After welcoming the participants, we explained the purpose and the procedure of
the study. Afterward, we asked them to fill out a consent form and a demographics
questionnaire. During the whole study, the participants were seated on a chair,
the wizard (experimenter) was sitting directly opposite to the participant, with a
table in between. The study started by handing the smartphone to the participant.
In the Tutorial condition, the participant first learned about all input techniques
using the tutorial and then started with the TASKS. In the other conditions, the
participants directly started with the tasks A pop-up informed them about the input
technique in the Pop-up condition and an icon representing the input technique
was displayed in the Depiction condition. The order of the tasks was randomized.
No further information was given by the experimenter; however, after each task,
participants were asked three questions: (1) Did you feel comfortable performing
the input? (2) Did you like the method introducing the input technique? and (3)
Do you have suggestions for improving the introduction method?

6.4.4 Participants

We recruited 36 participants (23 male and 13 female). The participants were
aged from 20 to 29 years (M = 24.2, SD = .38). The majority (21) of them were

1All images used in the study are under Creative Commons CC0 available at: pixabay.com
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Android users, 13 were iOS users, and only 2 were Windows Phone users. In
total, the study took between 30 and 40min per participant. We reimbursed the
participants with 5e.

6.5 Results

In total 36 participants rated 180 interactions, each using an SUS and an AttrakD-
iff. The UX of each of the three COMMUNICATIONPATTERNS was assessed by 12
participants in a between-subjects design. Thus each participant filled in five SUS
and five AttrakDiff, one for each TASK. Additionally, they answered a set of three
questions regarding the COMMUNICATIONPATTERN for each TASK. The audio
recordings were transcribed by two researchers and we performed a simplified
qualitative analysis with affinity diagramming on the interview data [57].

6.5.1 System Usability Scale (SUS)

To conduct a two-way mixed model ANOVA, we applied the Aligned Rank
Transform (ART) [180] to the SUS scores, using the ARTool toolkit1 to align and
rank our data.

We conducted a two-way mixed model ANOVA to determine whether TASK

and COMMUNICATIONPATTERN significantly influenced the usability of the in-
teraction, see Figure 6.5. For all means and standard deviations see Table 6.1.
Our analysis revealed significant main effects for TASK and COMMUNICATION-
PATTERN on the SUS score (F4,132 = 5.975, p < .001; F2,33 = 7.783, p < .002,
respectively). However, there were no significant two-way interactions between
TASK × COMMUNICATIONPATTERN (F8,132 = 1.276, p = .261). Pairwise post-
hoc comparisons using Tukey’s method for p-value adjustment within the levels
of the main factor COMMUNICATIONPATTERN revealed significant differences
of the SUS score between Depiction vs. Pop-up (t147.78 = 3.142, p < .006) and
Depiction vs. Tutorial (t147.78 = 3.637, p < .002). However, the pairwise compar-
isons did not reveal a significant difference for Pop-up vs. Tutorial (t147.78 = .495,
p = .874).

1http://depts.washington.edu/madlab/proj/art/index.html
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Figure 6.5: The system usability scale (SUS) results of COMMUNICATIONPATTERN ×
TASK. Error bars are showing the standard error.

6.5.2 AttrakDiff

To conduct a two-way mixed model ANOVAs, we again applied the Aligned Rank
Transform (ART) [180] to the three scores of the AttrakDiff, using the ARTool
toolkit to align and rank our data. We performed four two-way mixed model
ANOVAs one for each scale: Pragmatic Quality (PQ), Hedonic Quality-Identity
(HQ-I), Hedonic Quality-Simulation (HQ-S), and Attractiveness (ATT). For all
means and standard deviations see Table 6.2.

We conducted a two-way mixed model ANOVA to determine whether TASK

and COMMUNICATIONPATTERN significantly influenced the Pragmatic Quality
(PQ), see Table 6.2 and Figure 6.7. Our analysis revealed significant main effects
of TASK and COMMUNICATIONPATTERN on the PQ score (F4,132 = 10.045, p <

.001; F2,33 = 5.553, p < .01, respectively). However, there were no significant
two-way interactions between TASK × COMMUNICATIONPATTERN (F8,132 = 1.3,
p = .249). Pairwise post-hoc comparisons using Tukey’s method for p-value
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adjustment within the levels of the main factor COMMUNICATIONPATTERN

revealed significant differences of the PQ score between Depiction vs. Tutorial
(t125.79 = 3.256, p < .005). However, the pairwise comparisons did not reveal
significant differences for Depiction vs. Pop-up (t125.79 = 2.244, p = .068) and
Pop-up vs. Tutorial (t125.79 = 1.012, p = .571).

We conducted a second ANOVA to determine whether TASK and COMMU-
NICATIONPATTERN significantly influenced the Hedonic Quality-Stimulation
(HQ-S), see Table 6.2. Our analysis revealed no significant main effects nor a
significant two-way interaction (p > .05), see Table 6.2.

We conducted a third ANOVA to determine whether TASK and COMMUNICA-
TIONPATTERN significantly influenced the Hedonic Quality-Identity (HQ-I), see
Table 6.2 and Figures 6.6 and 6.7. Our analysis revealed significant main effects
for TASK on the HQ-I score (F4,132 = 4.071, p < .004). However, there were no
significant main effect for COMMUNICATIONPATTERN and no significant two-
way interaction between TASK × COMMUNICATIONPATTERN (F2,132 = 1.129,
p = .336, F8,132 = .851, p = .56, respectively).

Lastly, we conducted a fourth ANOVA to determine whether TASK and
COMMUNICATIONPATTERN significantly influenced the Attractiveness (ATT),
see Table 6.2. Our analysis revealed significant main effects for TASK on the ATT
score (F4,132 = 9.275, p < .001). However, there were no significant main effect

Depiction Pop-up Tutorial

M SD M SD M SD

Alarm 72.1 23.3 57.9 20.8 65.6 20.4
Chat 80.2 15.1 69.6 26.3 62.1 22.3
Drawing 94.4 8.5 75.6 22.7 70.8 17.2
Gallery 87.7 6.2 78.5 11.4 80.6 22.5
Map 90.2 11.6 76. 21.2 68.3 22.4

Mean 84.9 15.9 71.5 21.7 69.5 21.3

Table 6.1: The system usability scale (SUS) results of COMMUNICATIONPATTERN ×
TASK, SUS score translate in letter grades as follows: 65.0 - 71.0 = “C”, 71.1 - 72.5 =

“C+”, and 84.1 - 100.0 = “A+” [155].
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Figure 6.6: The AttrakDiff results of the four categories Pragmatic Quality (PQ), He-

donic Quality-Identity (HQ-I), Hedonic Quality-Simulation (HQ-S), and Attractiveness

(ATT) for the three COMMUNICATIONPATTERNS.

for COMMUNICATIONPATTERN and no significant two-way interaction between
TASK × COMMUNICATIONPATTERN (F2,132 = 1.129, p = .434, F8,132 = .885,
p = .531, respectively).

6.5.3 Qualitative Results

Asked if they felt comfortable performing the input techniques, participants
provided generally positive feedback. However, the Alarm task stood out with
17 out of 36 (47.2%) participants considering this interaction uncomfortable. All
other tasks were considered uncomfortable by fewer than 10 participants. The
Drawing tasks seemed to be the most comfortable tasks as they only received
negative comments by four participants.

Next, participants were asked to comment on the communication method.
Here, we found that the GALLERY task was the most criticized across all COM-
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Depiction Pop-up Tutorial

M SD M SD M SD

PQ 1.71 .14 .9 .21 .69 .18
HQ-I 1.3 .11 .86 .17 .95 .12
HQ-S 1.38 .08 1.53 .1 1.27 .1
ATT 1.35 .15 1.01 .19 .86 .17

Mean 1.44 .18 1.08 .17 .94 .14

Table 6.2: The AttrakDiff results of the four categories Pragmatic Quality (PQ), Hedonic

Quality-Identity (HQ-I), Hedonic Quality-Simulation (HQ-S), and Attractiveness (ATT) of

COMMUNICATIONPATTERN × TASK. All scales range between -3 and 3.

MUNICATIONPATTERNS (6 × Depiction, 3 × Pop-up, and 5 × Tutorial). On the
other hand, in the Drawing task, only the Pop-up, and Tutorial were criticized.
All other 164 comments were positive.

Participants provided several comments improving the input techniques. How-
ever, in regards to the COMMUNICATIONPATTERNS participants had two major
suggestions. First, participants asked for an animation instead of static icons 50
of the 180 (27.8%) times (16 × Depiction, 17 × Pop-up, and 17 × Tutorial). Sec-
ond, 16 times participants recommended a video to explain the input techniques
(1 × Depiction, 7 × Pop-up, and 8 × Tutorial).

6.6 Discussion

We conducted a mixed design study with 36 participants. Each participant per-
formed five different TASKS, each with a different input technique. The novel
input techniques were communicated in three different ways either through De-
piction, Pop-up, or Tutorial. Each participant was only subject to one of the
three COMMUNICATIONPATTERNS. We are mainly interested in how the differ-
ent COMMUNICATIONPATTERNS influenced the participants’ ratings rather than
how the TASKS performed against each other. Thus, the discussion focuses on
comparing the COMMUNICATIONPATTERNS.
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Figure 6.7: Portfolio presentation graph comparison of the AttrakDiff, with Hedonic

Quality (HQ) = Hedonic Quality-Identity (HQ-I) + Hedonic Quality-Simulation (HQ-S).

Looking at the SUS results, our analysis revealed that the Depiction method
to communicate new input techniques outperformed both the Pop-up and the
Tutorial in terms of overall usability of the techniques. Moreover, the portfolio
presentation of the AttrakDiff charted the Depiction in the “desired” area while
the other COMMUNICATIONPATTERNS were positioned in the less attractive
“self-oriented” area. However, only the Pragmatic Quality (PQ) is significantly
different for Depiction vs. Tutorial.

A number of participants commented on the icon for visualizing the available
input technique. Across all COMMUNICATIONPATTERNS, they asked for an
animation. Moreover, for the Pop-up and Tutorial they would have liked a video
to guide them through the procedure of the new input technique.
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Summarizing our results we found that users prefer the Depiction approach
using icons over both Pop-up and Tutorial with regards to the SUS, the Pragmatic
Quality (PQ) of the AttrakDiff and the qualitative feedback. Therefore, our results
are in line with the design recommendation by Shneiderman et al. [160] and
Norman [138]. On the other hand, today’s consumer devices provide features
that lack easy and intuitive discoverability. Thus, they need to use tutorials while
setting up a new device or using pop-ups. This is not only true for new devices
but also for new in-app features. As a result of our studies, we conclude that
Depiction is generally preferred by users. However, we also see advantages of the
other methods which would suggest that using Pop-up or Tutorial can in some
cases also be beneficial.

Depiction offers an in-situ visualization of the “simple” interactions [153]
directly within the GUI. While this has the advantage that the user is informed
about the input technique right on the spot where the technique is used, the
representation is limited to a small visual footprint, similar to the fingerprint
icon for unlocking the phone. Therefore, long explanations cannot be embedded
within a Depiction and the representation always uses display space not only
when the interaction is new to the user. Moreover, while animating the Depiction
is possible, this will guide the users’ attention away from the content towards the
interaction where the GUI should enable to perform a task and not distract the
user.

Pop-ups enable developers and designers to a communicate “compound”
interactions [153] (multiple gestures as one single input) in different levels of
detail. A simple icon combined with text is one option; however, animations
or even videos can also be used to communicate input techniques to users. The
drawback of Pop-ups is that they disrupt the interaction flow and force users to
switch the context whenever the Pop-ups show up to teach a new input technique.

Tutorials are similar to Pop-ups as they can communicate “compound” interac-
tions, but also enable developers and designers to communicate more conditional
“compound” interactions and even multiple input techniques at the same time.
While the workflow of the user is not interrupted by Tutorials, the user is asked to
learn multiple input techniques at once which increases the workload and can be
confusing.
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6.7 Design Implications

We derived the following design implications for the three approaches Depiction,
Pop-up, and Tutorial to communicate novel input techniques to users.

Interaction complexity dependent communication. “Simple” input tech-
niques should be explained through Depiction. “Compound” input tech-
niques should be explained through Pop-ups and conditional “compound”
input techniques through a Tutorial.

Animate if possible. Pop-ups and Tutorials should be animated and presented
in a visually compelling way. However, Depiction should be only animated
when an input technique is available for the first time; later no animation
should be used to avoid distracting the user.

Make use of the screen space. Pop-ups are preferable to Depiction for small
screen sizes to save the space for displaying content. For large screens
Tutorials are preferable to Pop-ups as an extra side view can present all
information without cutting down on the user’s content.

6.8 Summary

In this chapter, we investigated RQ4: “How should finger orientation input be
communicated to the user?” We first conducted design sessions with 12 UX
experts and found that in general there are three approaches for communicating
new input techniques, namely: Depiction, Pop-up, and Tutorial. To understand
each approach, we conducted a study in which 36 participants were taught new
input techniques to perform five different tasks using one of the three approaches.
Based on the findings of both studies we derived three design implications for how
to communicate new input techniques. In particular, we found that the approach
should be selected based on the complexity of the interaction, novelty to the user,
and the device size.

While we derived a set of three concrete design implications to introduce
users to new input techniques, future research should investigate the long-term
effects of each approach as our study was conducted in a lab environment. Here,
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future research should focus on long term memory effects. Especially when using
Pop-ups and Tutorials, new input techniques might be forgotten over time. As
our study was conducted in a lab setting, this possibly influenced the participants’
ability to identify the new interaction. Thus, the input techniques should be
deployed in real-life tasks which would enable in-the-wild evaluation.
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7
Conclusion

In this thesis, we investigated how interaction with touchscreens can be enhanced
through finger orientation. We first investigated different recognition approaches
to extract both the pitch and yaw angle of the finger to enable devices to imple-
ment new gestures and use cases (RQ1, see Chapter 3). We first presented a
camera-based approach which can turn any flat surface into a surface with finger
orientation recognition capabilities. We highlight that this helps especially in
the early stages of the human-centered design circle where low fidelity proto-
types come to play. Additionally, we presented a method to recognize the finger
orientation for high fidelity prototypes and consumer devices where we used
machine learning and Convolutional Neural Networks (CNNs) to estimate the
finger orientation.

While the recognition of new interaction techniques is an important topic,
in this thesis we highlight a set of other domains which are equally important
to understand before designers can implement new use cases. In detail, we
highlighted three key areas: ergonomic constraints (RQ2, see Chapter 4), social
implications (RQ3, see Chapter 5), and discoverability (RQ4, see Chapter 6).
While these areas are important for all new interaction techniques, in the thesis,
we address them with respect to touchscreens and finger orientation.
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Overall, we showed that ergonomic constraints need to be considered when
designing new use cases. In respect to finger orientation, our main finding here is
that the range of comfortably usable finger orientations is limited. Therefore we
defined the comfort and non-comfort zones. These zones are influenced by the
interacting hand which therefore also needs to be considered. Finally, we showed
that the user’s situation is in needs to be considered. Tabletop-like scenarios
are leading to a smaller range of comfortably usable finger orientation inputs in
contracts to mobile scenarios where the user can also rotate the screen to a certain
extent. Thus, before implementing new use cases for finger orientation designers
need to be aware of these ergonomic constraints.

To understand and evaluate the social implications of new interaction tech-
niques, we first presented a new mixed method approach to study the influence
on social settings and then evaluate how finger orientation performs. Our new
approach combines traditional conversation analysis with new technologies. We
substitute manual gaze decoding with eye trackers worn by all participants. More-
over, we employ entry and final interviews to better understand how the partic-
ipants felt and interacted during the conversation as well as how they perceive
the interaction technique. Lastly, these interviews are not only employed to
understand the interaction technique but also to give new insights to improve
the interaction for the next iteration of the design circle. The last part of this
thesis focuses on the discoverability of new interaction techniques. Numerous
interaction techniques have been proposed in the past and they certainly all work
different. Thus, informing the user about them in a key challenge in order to
promote new interaction techniques and eventually making them state-of-the-art.
We showed that three communication methods are envisioned by designers: de-
piction, pop-up, and tutorial. Moreover, we show that from a design point of view
they all have their advantages and disadvantages; however, users prefer depiction
over the others. Thus, we present design implications which help designers to
inform the user.

Research presented in the past which investigates new interaction techniques
mainly focus on the recognition or implementation and the use cases. Thus, past
research often highlights how a new interaction technique functions and how it can
be utilized to improve interaction. Beyond the recognition, we present arguments
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that the characteristics of new interaction techniques are also important to consider.
We argue that, ergonomic constraints, social implications, and discoverability are
equally important areas when investigating new interaction techniques. Moreover,
we argue that these areas need to be investigated even before designers can design
new use cases to embrace the new interaction techniques. Therefore, this thesis is
the foundation for designers who want to enable touch surfaces to be reactive to
the finger orientation.

With this thesis, we contribute insights to enable designers developing new
use cases but also want to highlight that there is more than the recognition part
to new interaction techniques. Therefore, this thesis presents a new approach on
how to study new interaction technique which is necessary to fully understand
an interaction technique. In the thesis we present an in-depth assessment of
finger orientation as additional input dimensions for touchscreens. We call this
type of in-depth evaluation a vertical evaluation where each facet of interaction is
analyzed to understand the design space of a new interaction technique better. The
results gained from a vertical evaluation will help to design better use cases as they
are known to very stakeholder even before considering and designing new use
cases. Vertical evaluation is in contrast to horizontal evaluation where different
interaction techniques are compared or implemented using the same strategies.
Here we want to highlight that the same methods which were used to recognize
the finger orientation can easily be applied to recognize other properties of the
finger. Using motion tracking data and user rating can help to understand other
interaction techniques better. The method presented to study social implications
can adapt to analyze any interaction techniques with a conversation partner in
mind.

7.1 Future Work

With this thesis, we lay the foundation to understand finger orientation as addi-
tional input dimensions for touchscreens. With this newly gained knowledge of
how to incorporate finger orientation as additional interaction technique for a new
generation of devices, we see the next step clearly in designing and implementing
new use cases. While related work already suggested some use cases, e.g. Xiao et

7.1 | Future Work 157



al. [188], we think a fundamental question is not answered yet. Finger orientation
can be used as a relative and absolute input. Here, relative input would change
the view in a GUI in relation to the change of the finger orientation, while in
an absolute input, the view would adopt the same angle as the finger on the
surface. However, we see evidence that they both could be viable for different use
cases. For instance, turning a knob or rotating an image could be done relative in
contrast to 3D navigation where it might be better to interact absolute. This is a
major challenge when designing new use cases which enable finger orientation
manipulation.

Beyond further investigation on how to design new use cases for finger orien-
tation as additional input dimensions, we see the need to understand interaction
techniques which have been proposed in the past but also new propped ones better.
Here, we clearly emphasis to use the vertical approach even before designing new
use cases as more work needs to be invested in the early stages of investigations
of new interaction techniques. We argue for long-term benefits in well designed
use cases when fostering awareness of the design challenges in the early stages.

Finally, in this thesis, we show that recognition, ergonomic constraints, social
implications, and discoverability need to be considered as a whole when trying
to fully understand a new interaction technique. Thus, this thesis only presents a
vertical evaluation of finger orientation. However, we presented a second dimen-
sion, the horizontal evaluation, which links the key areas of different interaction
techniques. In this thesis, we link to other interaction techniques and use method
form other fields to assess finger orientation. However, a in-depth horizontal
linking will foster a better understanding of all key areas. Therefore, future work
should not only investigate the vertical evaluation of a single interaction technique
but also horizontal evaluation.
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[187] P. W. Woźniak, L. Lischke, S. Mayer, A. Preikschat, M. Schweizer, B. Vu, C. von Molo,
N. Henze. “Understanding Work in Public Transport Management Control Rooms.”
In: Companion of the 2017 ACM Conference on Computer Supported Cooperative

184 Bibliography

https://doi.org/10.1145/2702613.2732863
https://doi.org/10.1145/2371664.2371669
https://doi.org/10.1145/2999508.2999522
https://doi.org/10.1145/2785830.2785893
https://doi.org/10.1145/2371664.2371669
https://doi.org/10.1145/2957265.2961865
https://doi.org/10.1145/2858036.2858491


Work and Social Computing. CSCW ’17 Companion. Portland, Oregon, USA:
ACM, Jan. 1, 2017, pp. 339–342. ISBN: 978-1-4503-4688-7. DOI: 10.1145/
3022198.3026341 (cit. on p. 23).

[188] R. Xiao, J. Schwarz, C. Harrison. “Estimating 3D Finger Angle on Commodity
Touchscreens.” In: Proceedings of the 2015 International Conference on Interac-
tive Tabletops & Surfaces. ITS ’15. Madeira, Portugal: ACM, 2015, pp. 47–50.
ISBN: 978-1-4503-3899-8. DOI: 10.1145/2817721.2817737 (cit. on pp. 21,
27–30, 39, 40, 42, 43, 49, 52–57, 60–63, 71, 158).

[189] V. Zaliva. “3D finger posture detection and gesture recognition on touch sur-
faces.” In: 12th International Conference on Control Automation Robotics Vision.
ICARCV 2012 December. IEEE. 2012, pp. 359–364. ISBN: 9781467318716. DOI:
10.1109/ICARCV.2012.6485185 (cit. on pp. 28, 29, 40).

[190] J. Zheng, D. Vogel. “Finger-Aware Shortcuts.” In: Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems. CHI ’16. San Jose, Cali-
fornia, USA: ACM, 2016, pp. 4274–4285. ISBN: 978-1-4503-3362-7. DOI: 10.
1145/2858036.2858355 (cit. on p. 133).

All URLs cited were checked in March 2019.

Bibliography 185

https://doi.org/10.1145/3022198.3026341
https://doi.org/10.1145/2817721.2817737
https://doi.org/10.1109/ICARCV.2012.6485185
https://doi.org/10.1145/2858036.2858355
https://doi.org/10.1145/3022198.3026341
https://doi.org/10.1145/2858036.2858355




List of Figures

1.1 Examples of finger orientations in a mobile setup. Finger orienta-
tion input with pitch and yaw input can enlarge the input space
for touch surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 The study app is showing instructions to perform a 30◦ yaw input
at one specific position. . . . . . . . . . . . . . . . . . . . . . . 42

3.2 The wooden frame with the attached web cameras which we used
for ground truth recording in our study. . . . . . . . . . . . . . . 43

3.3 A participant while performing the task. . . . . . . . . . . . . . 44
3.4 The scatter plots are showing the points where we gained data

samples from the study. The underlining plane represents the
correction model for the pitch correction based on pitch and yaw
of the depth camera. . . . . . . . . . . . . . . . . . . . . . . . . 45

3.5 The scatter plots are showing the points where we gained data
samples from the study. The underlining plane represents the
correction model for the yaw correction based on pitch and yaw
of the depth camera. . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 The study setup showing the Nexus 5 and the aluminum profiles
where the cameras are firmly mounted to. . . . . . . . . . . . . 50

187



3.7 A close up of a participants hand while performing the study. On
the participants index finger we attacked the ridget body to track
the finger orientation. . . . . . . . . . . . . . . . . . . . . . . . 52

3.8 The blue counts are representing the distribution of pitch samples
which we used for the modeling. The yellow area represents the
distribution of pitch samples we recorded in our study. The are in
between in obtained by flipping the yaw data. . . . . . . . . . . 53

3.9 The blue counts are representing the distribution of yaw samples
which we used for the modeling. The yellow area represents the
distribution of yaw samples we recorded in our study. The area in
between in obtained by flipping the yaw data. . . . . . . . . . . 54

3.10 The remaining pitch MAE when using out CNN + L2 model. The
gray area shows the 95% CI. . . . . . . . . . . . . . . . . . . . 56

3.11 The remaining yaw error when using out CNN + L2 model. The
gray area shows the 95% CI. . . . . . . . . . . . . . . . . . . . 57

3.12 The layer structure for our best performing model: CNN + L2
model. Max-pooling is used with a Stride of 2 and pedding is
set to same. The dense layers use a softplus activation function
(softplus(x) = log(1+ exp(x))). . . . . . . . . . . . . . . . . . . 59

4.1 The study apparatus with the 3D printed 55◦ pitch stabilizer and
the 16 yaw positions drawn on the touch surface. . . . . . . . . 69

4.2 The four pitch stabilizers we used in the study to limit PITCH to
77.5◦, 55◦, 32.5◦, and 10◦ presented from left to right. . . . . . . 71

4.3 The apparatus we used in our study, showing the tablet, the touch
layer and one of the pitch stabilizer while one participant touches
the touch surface. . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 The average feasibility RATING (from 0 = “easy” to 100 = “hard”)
for the different PITCH inputs. . . . . . . . . . . . . . . . . . . 74

188 List of Figures



4.5 The average feasibility RATING (from 0 = “easy” to 100 = “hard”)
for the different YAW inputs averaged over all PITCHes. The
figure also shows the fitted sin curve representing the RATINGS.
The blue line indicates the threshold between comfort and non-
comfort zones. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.6 The bars represent how often a yaw angle was rated as not feasible
to perform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.7 Comparison of HAND in respect to the handedness of the partici-
pants, showing the average value per YAW. . . . . . . . . . . . . 79

4.8 A participants performing a 32.5◦ pitch and 45◦ yaw input with
the left hand while being equipped with our 3D printed tracking
parts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 The setup with the 6DOF tracking system, the four pitch stabilizer
on the left and the Motorola Nexus 6 with markers. . . . . . . . 85

4.10 The study app is showing instructions to perform a 10◦ pitch and
45◦ yaw input at the red crosshair while remembering the word
daughters which is displayed in the upper half. . . . . . . . . . . 86

4.11 (a) The four pitch stabilizers with the copper plate and the wire,
we used in the study to limit PITCH to 77.5◦, 55◦, 32.5◦ and
10◦ presented from left to right. (b) A CAD model of a pitch
stabilizer, revealing the wiring and the copper plate in the base. 87

4.12 The average feasibility RATING (from 0 = “easy” to 100 = “hard”)
for the different PITCHFinger inputs. The green areas represent
the comfort zone in a two-handed smartphone scenario. * the red
striped areas represent the comfort zone for tabletops as presented
in Section 4.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.13 The average feasibility RATING (from 0 = “easy” to 100 = “hard”)
for the different YAWFinger inputs averaged over all PITCHFinger.
The figure also shows the fitted sin curve representing the RAT-
INGS. The blue line indicates the threshold between comfort and
non-comfort zones as defined in Section 4.2. * approximated
rating for tabletops as presented in Section 4.2. . . . . . . . . . 89

List of Figures 189



4.14 The average phone orientation in a two-handed smartphone inter-
action scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.15 The average phone orientation adjusted to be hand invariant. . . 94
4.16 The average diatnce bewtween the touch point of the finger tip

and the cross hair on the screen. . . . . . . . . . . . . . . . . . 95

5.1 The study procedure in our new mixed-method approach. Data
collection methods are: video, audio and eye tracking. . . . . . . 105

5.2 The study setup showing two participants in a conversation wear-
ing mobile eye tracker. . . . . . . . . . . . . . . . . . . . . . . 107

5.3 Declining an incoming call selection phase using the standard
touch interface. In the first step (a) the participant taps the center
icon and then (b) moves it over to the decline symbol, finally (c)
the release of the finger will trigger the highlighted action. . . . 109

5.4 Declining an incoming call using SurfaceSliding. In a first step
(a) the participant grasps the phone. Then the moves the phone
in the direction of the decline symbol in respect to the center of
the phone (b). After the movement (c) the decline call action is
triggered. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 The average values and standard error for TECHNIQUE × PHONE. 112
5.6 Declining an incoming call selection phase using finger orienta-

tion interface. In the first step (a) the user taps the center icon
and then (b) changing the yaw of the finger in order to move the
selection icon twards the decline button, finally (c) the release of
the finger will trigger the highlighted action. . . . . . . . . . . . 120

5.7 The study setup showing one participant wearing mobile eye tracker.121
5.8 The average percentages of looking at the phone during the dis-

cussion and standard error for TECHNIQUE × PHONE. . . . . . 123
5.9 (a) Showing the average reaction time (TCT-R) between incoming

call highlight and a participant touched the phone. (b) Showing
the average interaction time to decline a call. . . . . . . . . . . . 124

190 List of Figures



6.1 The input techniques which were used to study possible commu-
nication patters for novel input techniques: Finger Orientation
Interaction, Finger Roll Interaction, Nail/Knuckle Interaction,
and Finger-Aware Interaction. . . . . . . . . . . . . . . . . . . 134

6.2 Sketches drawn by the experts during the interview to underline
their strategies for their use cases. (a) and (b) present possible
depiction icons to guide the user to use their nail or knuckle as
input. (c) - (d) present three different use cases each for one input
technique. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

6.3 The three different COMMUNICATIONPATTERNS which were
proposed by the experts in the design session. . . . . . . . . . . 142

6.4 The five different TASKS used in the evaluation study. . . . . . . 143
6.5 The system usability scale (SUS) results of COMMUNICATION-

PATTERN × TASK. Error bars are showing the standard error. . . 146
6.6 The AttrakDiff results of the four categories Pragmatic Qual-

ity (PQ), Hedonic Quality-Identity (HQ-I), Hedonic Quality-
Simulation (HQ-S), and Attractiveness (ATT) for the three COM-
MUNICATIONPATTERNS. . . . . . . . . . . . . . . . . . . . . . 148

6.7 Portfolio presentation graph comparison of the AttrakDiff, with
Hedonic Quality (HQ) = Hedonic Quality-Identity (HQ-I) + He-
donic Quality-Simulation (HQ-S). . . . . . . . . . . . . . . . . 150

List of Figures 191





List of Tables

1.1 Summary of the research questions in this thesis. . . . . . . . . . 22

3.1 The RMSE and standard division for pitch and yaw per finger. . . 46
3.2 The reduction of RMSE when applying the correction models to

pitch and yaw. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.3 The best results for all tested estimation models. Errors are reported

in angular degree error. ∗) These results have been achieved with a
small subset of the original data set (1.4%). ∗∗) For the reported
values we used a DNN instated of a GP regression for the pitch
estimation as the data set was to big for a GP. . . . . . . . . . . . 61

4.1 One-way RM-ANOVAs to determine if the RATING is depended
on PITCH within zones and HAND. . . . . . . . . . . . . . . . . 76

4.2 One-way RM-ANOVAs to determine if the RATING is depended
on YAW within zones and HAND. . . . . . . . . . . . . . . . . . 77

4.3 One-way RM-ANOVAs to determine if the phones’ orientation is
depended on ZONE within HAND. . . . . . . . . . . . . . . . . . 91

6.1 The system usability scale (SUS) results of COMMUNICATION-
PATTERN × TASK. . . . . . . . . . . . . . . . . . . . . . . . . . 147

193



6.2 The AttrakDiff results of the four categories Pragmatic Quality
(PQ), Hedonic Quality-Identity (HQ-I), Hedonic Quality-Simulation
(HQ-S), and Attractiveness (ATT) of COMMUNICATIONPATTERN

× TASK. All scales range between -3 and 3. . . . . . . . . . . . . 149

194 List of Tables



List of Acronyms

ANOVA analysis of variance
ART Aligned Rank Transform
ATT Attractiveness
BoD Back-of-Device
CNN Convolutional Neural Network
CSCW Computer-Supported Cooperative Work
DNN Deep Neural Network
FCL fully connected layer
FoV field of view
GP Gaussian process
GUI graphical user interface
HCI human-computer interaction
HFE Human Factors and Ergonomics
HQ-I Hedonic Quality-Identity
HQ-S Hedonic Quality-Simulation
kNN k-nearest neighbor
ML Machine Learing
NN Neural Network
PQ Pragmatic Quality
RF Random Forest

195



RMSE root mean squared error
SUS system usability scale
UX user experience

196 List of Tables



Sven Mayer
Finger Orientation as an Additional Input 
Dimension for Touchscreens

Human-computer interaction is gaining more importance as humans mostly 
interact with ubiquitous computing devices. While the first ubiquitous devices 
were controlled via buttons, this changed with the invention of touchscreens. The 
phone as the most prominent ubiquitous computing device is heavily relying on 
touch interaction as the dominant input mode. Through direct touch, users can 
directly interact with graphical user interfaces (GUIs). GUI controls can directly 
be manipulated by simply touching them. However, current touch devices reduce 
the richness of touch input to two-dimensional positions on the screen, which 
leaves the user with a limited input bandwidth when comparing the input to 
traditional mouse and keyboard input.

This dissertation presents the results to understand how interaction with 
touchscreens can be enhanced through finger orientation. We first investigated 
two recognition approaches to extract both the pitch and yaw angle of the finger to 
enable devices to implement new gestures and use cases. While the recognition 
of new interaction techniques is an important topic, in this thesis we highlight a 
set of other domains which are equally important to understand before designers 
can implement new use cases. In detail, we additionally highlighted three key 
areas: ergonomic constraints, social implications, and discoverability. Here 
we present how the ergonomic constraints divide the input space in a comfort 
zone and non-comfort zone. We investigated how finger orientation impacts 
social settings. Finally, we present how possible finger orientation input can be 
communicated to the user.
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