MML: A Language for Modeling
Interactive Multimedia Applications

Andreas Pleufl
Ludwig-Maximilians-Universitat Miinchen
Department for Computer Science, Media Informatics Group
andreas.pleuss@ifi.lmu.de

Abstract

The development of highly interactive multimedia
applications is still a challenging and complex task.
In addition to the application logic multimedia appli-
cations typically provide a sophisticated user interface
with integrated media objects. As a consequence, the
development process involves different experts for soft-
ware design, user interface design, and media design.
There is still a lack of concepts for a structured devel-
opment process to integrate these requirements.

In this paper we introduce the Multimedia Modeling
Language (MML), a visual modeling language support-
ing the design process in multimedia application devel-
opment. It is part of a model-driven development ap-
proach for multimedia applications. The language is
oriented on well-established software engineering con-
cepts, in particular UML 2.0. It integrates the results of
two different research lines: application-oriented mul-
timedia modeling and model-based user interface devel-
opment. In this paper we describe the concepts of the
language and present the modeling process with MML.
In particular we show how MML aims to integrate the
different developer roles in multimedia application de-
sign.

1 Introduction

The development of multimedia applications is still
a challenging task requiring much time and effort. This
holds especially for highly interactive multimedia appli-
cations which integrate media objects and complex user
interfaces with an amount of application logic com-
parable to conventional (e.g. business) applications.
Examples for this type of application are traditional
multimedia applications — like games, training, or sim-
ulation software — but more and more also information

systems with intensive usage of media. An example are
so-called ”infotainment systems” in cars, which provide
the user the control over the car’s complete edutain-
ment and comfort functionality through a multimodal
multimedia user interface.

Development support typically used for such appli-
cations are multimedia authoring tools like Flash or
Director. However, there is still a lack of the integra-
tion of principles from software engineering to achieve
a more structured and efficient development, as ob-
served by various research work like [1], [13], [2]. The
main problems lie in the low support of the authoring
tools to structure the applications and in the lack of
an adequate software design phase which integrates all
aspects of a multimedia application.

On of the most successful state-of-the-art concepts
in conventional software development is the usage of
visual modeling languages. They are an excellent tool
to support the application design phase. In addition,
modeling languages can be used for the automatic gen-
eration of code skeletons from the models. This can
help to overcome the problem of the code structuring in
authoring tools as expert knowledge, how to achieve a
better overall structure of the code, can be put into the
code generator. However, existing modeling languages
like the de-facto standard UML [10] are not sufficient
for multimedia application development as they do not
cover neither media integration nor general user inter-
face aspects [6], [4], [16].

In this paper we propose the Multimedia Mod-
eling Language (MML), an abstract and platform-
independent visual modeling language for interactive
multimedia applications. It bases on the concepts of
UML 2.0. MML is intended to support a design phase
for the overall application. In particular, it aims to in-
tegrate the involved different developer teams for soft-
ware design, media design and user interface design.

MML integrates the results of two different research
lines. The first one are the application-oriented mod-

eling approaches for multimedia and hypermedia ap-
plications. For hypermedia applications, a large spec-
trum of modeling approaches already exist, e.g. UWE
[8], OO-H [5] or [9]. However, they are optimized for
HTML-based applications. Even if they support the
integration of media objects into websites, they do not
cover the highly interactive and dynamic character of a
multimedia application user interface. A multimedia-
specific approach is OMMMA (Object Oriented Mod-
eling of Multimedia Applications, [14]). On that base
we propose in [7] the overall framework for a model-
driven development of multimedia applications. The
approach uses models for the application structure and
the coarse-grained overall behavior (in terms of scenes)
as well as simple models for the user interface presen-
tation and the interaction.

The second important research line is model-based
user interface development. An overview over the vari-
ous work developed in this field is provided e.g. in [15]
and [16]. Common concept in this field is the definition
of an abstract user interface model which contains ab-
stract user interface elements. The abstract user inter-
face elements are assigned to presentation units, which
are abstractions of a window on a graphical user inter-
face. On that base, an interaction model is provided.
Often the abstract user interface and the interaction
are derived from a task model [11] which is specified
during requirement analysis.

As the user interface plays a key role in multime-
dia applications, it should be obvious to consider the
knowledge from user interface modeling. In [12] we dis-
cuss the general concepts and requirements for the in-
tegration of user interface modeling and model-driven
multimedia application development. In the current
paper we propose with MML a concrete solution for
those concepts by integrating them into the overall
structure derived from [7].

Throughout the paper we use a break-out game as
running example. We believe that games are very well-
suited as examples for multimedia applications. On
the one hand they emphasize on the typical charac-
teristics of multimedia applications like a sophisticated
and highly interactive user interface and the heavy us-
age of multimedia. On the other hand, their expected
functionality is relatively easy to understand and does
not require specific domain knowledge. A screenshot of
the example break-out game is given in figure 1: The
player can steer the paddle horizontally to keep the
ball within the playing field. When the ball moves off
the field the player looses one of his lives. A brick is
removed from the playing field if it is hit by the ball.
The player reaches the next level of the game, when all
bricks are removed from the field. The game is over

Figure 1. An example break-out game imple-
mentation

when the player has lost all his lives.

The rest of the paper is structured as follows: MML
is introduced by presenting the structural model (sec-
tion 2), the scene model (section 3), the abstract user
interface model (section 4), and interaction model (sec-
tion 5). On that base we propose a design process for
multimedia applications considering the integration of
software designer, media designer and user interface de-
signer (section 6). Finally, we provide the conclusions
and an outlook (section 7).

2 Application Structure

In this section we describe the model of the static
application structure. As explained in [7] we use the
well-established concepts of UML 2.0 class diagrams
to model the structure of the application logic in an
object-oriented and platform-independent way. There-
fore we provide all constructs from UML 2.0 class dia-
grams, e.g. class properties like attributes, operations,
and associations, as well as class relationships like gen-
eralizations. Usually, a class represents an entity of the
multimedia applications program logic (referred to as
application entity), like Player, Ball, or Paddle in the
break-out game example.

In addition, fundamental parts of a multimedia ap-
plication are the media objects. In [7] we propose to
model them as specific kind of a class and include them
in the class diagram. In particular, they are related to
the application entities: e.g. in our example the ani-
mation which represents the ball is related to the pro-
gram logic of the ball (i.e. the application entity Ball).

Furthermore, [7] defines the media elements as media
components which encapsulate the media document it-
self as well as the required functionality to present it
to the user. For example the specification of a video
in the model implies the ability to encode and play the
video within the application.

In [12] we observe the need to specify the different
media types within the modeling language itself instead
of specifying them within the models. This is necessary
as they differ regarding their inner structure (see be-
low) and their possible behavior on the user interface
(see section 4). In addition, [12] explains the require-
ment to include the inner structure of media objects
in the model if it is related with application code: For
example in a racing game there is an animation repre-
senting the racing car. It includes inner (sub-) anima-
tions for the wheels and the door, which can be moved
independently. As wheels and doors have then to be
accessed by the application code, they must be explic-
itly specified in the model. The possible inner objects
of a media object depend on the media type (see [12]).

Figure 2 shows a MML class diagram for the break-
out example. Beside the standard UML elements
for the application entities (e.g. Ball) it contains
media components (here denoted in grey color, e.g.
BallAnimation) which are branded with a keyword for
the respective media type (e.g. Animation). A media
component can provide attributes and methods like an
ordinary class.

An application entity can be represented by one or
more media components. This is specified by the re-
lationship MediaRepresentation, denoted as a dashed
arrow, like between Ball and BallAnimation. To
model that a media component represents only a spe-
cific attribute of the application entity, the MediaRep-
resentation can be annotated with the respective at-
tribute name. A media component can be instanti-
ated multiple times within the application, like e.g.
the BrickAnimation in the break-out game. This is
modeled by attaching a multiplicity to the MediaRep-
resentation. An associated optional keyword specifies
whether all instances behave exactly identical (keyword
ref for reference) — i.e. they all reference the same
single internal instance — or whether they may behave
different (keyword copy).

A media component can contain inner objects (e.g.
for LevelGraphic). Inner objects are denoted within
the rectangle which represents the media component.
It is possible to decompose them hierarchically into a
tree structure with the media component itself as root
node. The edges leading to an inner object can be
annotated with multiplicities analogous to the Medi-
aRepresentation relationship.

<<Graphics>>
LevelGraphic

/

<<Graphics>> <<Graphics>>
Wall OffField

Player 11 BlockOut
-lives : int g
-score : int
+getlives() : int
+decreaselLifes() 1
+increaseScore()

1 Level

-number : int
+countBricks() : int 1
1 1 -level
-bricks 1
Ball
Brick Paddle
+startMoving() JefRight
+move() -
+init() +hit0) +reboundBall()
+rebound / \ \
und() TN \

! / \ \
A‘ ! \ \

\
I / v * \

U / M
«Animation» «Sound» «Animation»
BallAnimati d BrickAnimati

Br Br

«Animation»
Sy

PaddleA

Figure 2. The structure model for the break-
out game implementation

3 Scene Model

A common concept in user interface modeling is the
presentation units. Presentation units are containers
for the user interface elements. They can be seen as
an abstraction of a window of a graphical user inter-
face. Like conventional applications, multimedia appli-
cations usually also show different presentation units to
the user. A difference to conventional applications is
caused by the time-dependent behavior of media ele-
ments: they add an internal state to the presentation
unit. For example, when a presentation unit presenting
a video is interrupted while the video is playing (e.g.
to show a help window) the video should possibly be
continued after the interruption.

In [7] we address this requirement by scenes. A scene
represents a state of the application which corresponds
to the presentation of a specific presentation unit. In
addition, a scene may have attributes and operations
to realize its internal state. Thus, a scene is also a spe-
cific kind of a class and can be seen as a controller of
the application (in terms of the Model-View-Controller
pattern). In particular, scenes own specific opera-
tions called entry-operations and ezit-operations. An
entry-operation is used to initialize the scene. A scene
is always invoked by the call of an entry-operation.
An entry-operation can be branded with the keyword
history which denotes that the operation resumes the
last state of the scene which it had when it was active
before. Exit-operations are used to leave the scene and

to proceed to another scene.

We use the scenes to specify the overall behavior
of the application. Therefore we use an adapted kind
of state chart. The states correspond to the scenes
of the application. A transition between two scenes
implies the call of an exit-operation in the outgoing
scene and the call of an entry-operation in the target
scene. As scenes may provide several entry-operations,
each transition is annotated with the name of its target
entry-operation.

Figure 3 shows the scene model for our break-out
example. The application starts by invoking the Menu
scene through the entry-operation initialMenu().
From the menu it is possible to reach the Help scene
or the Game scene. The Game scene is invoked through
the entry-operation startGame, which holds parame-
ters containing the setting from the menu, i.e. a Player
object and a boolean value indicating whether sound
should be on or off during the game. After a level
of the game is finished the application shows the cur-
rent Score. If the player has some lives left it is pos-
sible to play the next level. Otherwise the application
presents the current Highscore list and then resumes
to the menu. When the application returns to the Menu
scene it calls the entry-operation resumeMenu (), which
is branded with the keyword history to indicate that
its internal state is resumed.

From the scene diagram, the class properties of the
scene can be derived. The entry-operations are visible
in the diagram. The parameters of the entry-operations
indicate the attributes of the scene. The exit-methods
are usually not shown in the diagram, as they are de-
rived from the transitions between the scenes. The im-
plicit entry-methods then get a default name with the
prefix exitTo followed by the name of the target scene
(e.g. exitToMenu). To provide an explicit overview
over the scene’s properties it is optionally possible to
additionally show them in the class diagram as specific
classes labeled with the keyword Scene.

To increase clarity, it is often useful to explicitly
model the scenes in terms of classes in the class dia-
gram.

4 Abstract User Interface

In this section we describe the abstract user inter-
face model derived from existing user interface model-
ing approaches and its integration into MML. Thereby
we consider the results of [12] to integrate the media
objects and the abstract user interface elements. As in
MML scenes act as presentation units (see section 3)
all user interface elements are assigned to one of the
scenes from the scene model.

IstartGame(p:Player,
hasSound:Boolean)

’

finitialMenu NlevelFinished(p:Player)

[p.lifes > 0]
/<<history> nextLevel()

I<<history>> resumeMenu
Score

/<<history>>

/<<history>>
resumeMenu

/gameOver(p:Player)
/menuHelp resumeMenu

Figure 3. The scene model for the example
application.

Game

T T [T

Level.number Player.score Player.lives

T 7B

Ball Brick [0..n] Paddle. Ball.startMoving
leftRight

Figure 4. The abstract user interface for the
scene Game

We use in MML the abstract user interface elements
proposed in [17]. Three kinds of elements from [17]
are relevant for our purpose: outputComponents, which
provide some information to the user, inputCompo-
nents, which allow the user to provide data input, and
actionComponents, which allow the user to invoke an
action of the application (without additional data in-
put). Usually the inputComponents act simultaneously
as outputComponents, as they also show the provided
input to the user. All kinds of abstract user interface
components can be associated with information from
the structural model, e.g. an outputComponent mostly
represents an attribute of an application entity.

Figure 4 shows the abstract user interface model
for the Game scene. It contains three outputCompo-
nents (denoted by a rectangle with an outgoing arrow)
for the player’s status information: Level.number,
Player.score, and Player.lives. The name of the
component indicates the associated information of the
structural model, i.e. the attribute number of the

class Level. Formally, this means that the user in-
terface component has a relationship (called UIRepre-
sentation) to the respective element from the structural
model. In addition it is optionally possible to model the
UlIRepresentations explicitly in the diagram by adding
the respective application entities to the diagram.

A user interface component may also represent in-
formation from the structural model which consists of
multiple objects or values. This is specified by the
assignment of a multiplicity to the respective UIRep-
resentation. If the UIRepresentations are omitted in
the diagram, the multiplicity can be denoted after the
name of the user interface component, like for the out-
putComponent Brick in figure 4.

The ball is represented by an outputComponent
Ball. As the user controls the paddle, the scene pro-
vides an inputComponent (denoted as a rectangle with
an ingoing arrow) Paddle.leftRight. Furthermore, it
contains an actionComponent (denoted as a rectangle
containing a right-pointing arrow) Ball.startMoving
to allow the user to start the game.

In [12] we discuss in detail that the media compo-
nents may partially realize the abstract user interface
elements. The realization of an abstract user inter-
face element through a media component is specified in
MML by the A UIRealization relationship denoted by a
dashed arrow (see figure 5). In addition it is also possi-
ble that a media component realizes the presentation of
the scene itself, like in our example the LevelGraphic.

Furthermore [12] shows that media types can invoke
actions themselves. An example is a time-related event
which is triggered by a temporal media object, e.g. by
a video after it has finished playing. Another exam-
ple is an animation which triggers an event when it
collides with another object on the screen or when it
reaches a specific screen region. To specify the obser-
vation of such events we introduce so-called sensors.
We model them in MML as a specific kind of UML
AcceptEventActions. Figure 5 shows four collision sen-
sors (branded with the keyword collision) provided
by the BallAnimation. They observe whether the ball
animation collides with a target object. The respec-
tive target object is specified by a relationship denoted
with the keyword test.

In summary, the abstract user interface model has to
be enhanced with the information which media compo-
nents realize user interface components as well as with
sensors. If the enhanced model should be differed from
the purely abstract user interface model it can be re-
ferred to as media user interface model.

<<Graphics>> Game
LevelGraphic

<<Graphics>> <<Graphics>>
Wall OffField

; - B B/ E
<<Collision>>
<<test>> OffField /?all B/r}ck [F;n] Paddle. Ball.startMoving
leftRight
L // \ R

1
N
| s s \
1 yd ’ \ \
1 4 \ \

{ «Sound»
<<Collision>> imati Bril
Wall <7

v

T[T

Level.number Player.score Player.lives

«Animation» «Animation»

T
|
1
i <<Collision>> | __<<test>>
\ Brick
|
<Collision>> <<test>>
Paddle

Figure 5. The integrated media user interface
model.

5 Interaction

The interaction model describes the behavior of
the application under consideration of the user input.
MML uses therefore an extended kind of UML activity
diagrams, as proposed in several user interface mod-
eling approaches like [17], [3]. They differ from plain
UML in the integration of the abstract user interface
objects, which may be associated with one or more ac-
tions. For our purposes, it is additionally necessary to
include the sensors provided by media objects in the
diagram, as they also directly influence the application
behavior.

Furthermore, we specify more precise rules for the
usage of activities and their contained actions to sup-
port clearer models and to enable code generation. In
MML, the interaction of each scene is modeled by ex-
actly one activity (which may contain sub-activities).
All actions in MML are UML CallOperationActions,
i.e. they correspond to the call of an operation. The
operations belong either to the scene itself or to a class
from the structural model, which can be an applica-
tion entity or a media component. According to UML
2.0 the class name can be specified in brackets below
the operation name. For example in 6 the first action
after the start of the activity calls the operation init
from the class Ball, e.g. placing the ball on its start
position.

The inputComponents and the actionComponents
influence the application’s behavior when the user pro-
vides input or triggers an action. Thus, we use them
like UML AcceptEventActions which wait for an event

init
(Ball:)

startMoving
(Ball:)

]

rebound Ball.startMoving

(Ball:)

Paddle.
leftRight

<<Collision>>
Paddle

<<Collision>>
Wall

<<Collision>>
Brick

<<Collision>>
OffField

reboundBall
(Paddle::)

hit
(Brick::)

decreaseLives
(Player::)

f [lifes > 0]
(Player::)
[else]
countBricks
(Level::)

[countBricks > 0] felse]

Figure 6. The interaction model for the scene
Game

— here the associated user action — and offer tokens to
their outgoing edges when the event occurs. In our
example the actionComponent Ball.startMoving has
an outgoing edge to the startMoving action. Like in
UML, the actions are performed when they receive to-
kens on all their ingoing edges (i.e. when all their fore-
going actions are completed). As startMoving has two
ingoing edges, the action is performed when initBall
has been completed and the user has invoked the ac-
tionComponent Ball.startMoving.

The outputComponents are used like UML SendE-
ventActions. They are implicitly updated after the in-
formation they represent has changed. Often it is not
necessary to specify this explicitly. Thus, the integra-
tion of the outputComponents is optional in the MML
interaction model.

The sensors from media components can be used like
conventional UML AcceptEventActions. In the exam-
ple in figure 6 we use them to leave an UML Interrupt-
ibleActivityRegion (denoted by the dashed rectangle)
via an UML interruptible activity edge (denoted by a
lightning-bolt edge).

We show the MML interaction model by a compre-
hensible example to demonstrate the suitability also
for non-trivial behavior as it typically may emerge
for an interactive multimedia user interface. Figure
6 shows the interaction model for the Game scene from
the break-out example. The activity starts with the
initialization of the ball (init). When the user in-
vokes the Ball.startMoving actionComponent, the
ball starts to move (startMoving action). In the fol-
lowing, the ball moves continuously over the playing
field (move operation from class Ball). In parallel,
the paddle moves (move operation from class Paddle)
every time when the user performs an input on the
Paddle.leftRight inputComponent. Both actions are
interrupted, when one of the collision sensors detects
a collision of the ball. In case of a collision with the
wall the ball is simply rebounced (rebound operation
of the class Ball) and continues to move. When the
ball collides with the paddle it is rebounded accord-
ing to the reboundBall operation of the class Paddle
as the paddle usually is used to control the ball di-
rection (e.g. by giving it spin). When the ball hits
a brick, the brick disappears (hit) and the player’s
score is increased (increaseScore). Afterwards the
number of the remaining bricks is tested. If there are
no bricks left, the scene’s exit-operation exitToScore
is executed and the activity terminates. Similar, the
number of the player’s lives is decreased when the ball
leaves the playing field (decreaseLives) and the ac-
tivity terminates when no more lives are left.

The activity diagram describes the complete inter-
action of the Game scene. If required, the UML struc-
turing mechanisms can be used to decompose the dia-
gram in several sub-units (i.e. sub-activities). As the
abstract user interface elements and the sensors from
media elements are mapped to UML constructs, the
whole semantic of the model is compliant to the UML
specification. We achieve a high degree of formalization
by restricting the actions to operation calls. Also the
constraints in guards (e.g. lives > 0) may only refer
to attributes or operations from the structural model.
In addition, the actions leading to a final node must al-
ways refer to exit-operations of the scene (exitToScore
in the example).

| I
Software ! Media ! User Interface
Design I Design I Design

| |
| |
|]

' ! MML Model
Structural Model :
Application Media :
Entities Components |
|

Scene Model

v

Abstract User
Interface Model

<

Media User Interface Model

Interaction
Model

| I
i i
: Code :
| Generator |
| |

o3

Code
Skeletons:
Classes,
Overall Behavior,
Media and Ul
Integration

Placeholders: Placeholders:
Media Objects and User Interface
their inner Structure Objects

swy

Figure 7. The application design process with
MML

6 Design Process

In the foregoing section we present how to model
the different aspects of a multimedia application with
MML. MML aims to support a structured application
design, building the bridge between the requirement
specification and the implementation. The diagram in
figure 7 shows the design process. In the following we
first explain the aspects shown in the diagram: the
assignment of models to one of the developer groups
which take part in the development process and the
refinement of models during the process. Later in this
section we go stepwise through the diagram.

A core characteristic of multimedia applications is
the involvement of experts for application design, user

interface design and media design. The abstract appli-
cation model helps to integrate the results from the dif-
ferent developer groups in a consistent way. It can act
as a common communication base and also as a kind
of contract. Therefore it is mandatory to assign (as far
as possible) each part of the model to a responsible de-
veloper group. This clarifies the responsibility for the
respective part of the model but also ensures that the
available knowledge is put into the right places within
the model. Thus, the diagram in figure 7 is vertically
subdivided in three sections which assign the assets of
the design process to the responsibility of software de-
sign, media design or user interface design.

The main parts of the design process in figure 7 are
the models we explained in the sections 2 to 5. The
arrows in figure 7 show how the models build up on
each other. If a model builds up on a foregoing model,
the development of the subsequent model usually leads
to refinements on the foregoing model, e.g. the sup-
plementation with some elements. Thus, the arrows
between the models in figure 7 denote on the one hand
the derivation of the models but on the other hand they
also imply the refinement of foregoing models. Thus, in
the following description of the design process we also
provide rules for the refinements in each development
step.

The base of the design process is the requirement
specification. The requirement specification may in-
clude use case diagrams for the software related re-
quirements and a task model for the user interface
related requirements of the application. Several user
interface modeling approaches propose how to derive
from a task model the presentation units (i.e. here the
scenes), the abstract user interface components, and
the interaction model (see e.g. [3]). The derivation of
the application entities can be performed like in con-
ventional software development.

The core of MML models is the structural model
(see section 2) which can be decomposed into applica-
tion entities as part of the software design and media
components as part of the media design. On that base
the scene model (section 3) is specified. It is part of
the user interface design. From the structural model,
mainly the identified media objects may influence the
choice of the different scenes. The scene model may
lead to refinements in the structural model: on the one
hand the scenes may be added to the class diagram;
on the other hand they may require additional media
components for the representation of themselves.

The abstract user interface model (section 4) defines
for each scene the associated abstract user interface el-
ements. It is part of the user interface design. The
abstract user interface elements are related to applica-

tion entities in the structural model. Thus, their speci-
fication helps to detect missing information in the class
diagram, i.e. the need of an additional property of an
application entity. Besides, actionComponents (e.g. a
cancel button) may imply additional transitions in the
scene model.

The integration of the media components into the
abstract user interface (also described in section 4, here
referred to as Media User Interface Model), is derived
from the abstract user interface and the media compo-
nents in the structural model. Here, the user interface
designer and the media designer should work together.

Finally the interaction model (section 5) is specified
using the elements from the media user interface model
and the structural model. During the specification of
the interaction model missing operations in the struc-
tural model as well as missing abstract user interface
elements may be detected. The basic steps of the in-
teraction are modeled by the user interface designer.
However, the final formal definition in terms of opera-
tions from classes of the structural model is also a task
of software design. The media designer is involved in
this task, if the scene’s behavior is influenced by media
objects, like in the example. But this does not apply for
all scenes in multimedia applications: e.g. the behavior
of the Menu scene may be specified independently from
media objects.

The overall MML model allows the automatic gen-
eration of code skeletons as described in [12]. In sum-
mary, we aim to generate code for those parts of the
application which are difficult to implement manually.
Those are mainly the overall structure of the applica-
tion and the integration of the various media and user
interface objects into the application logic. However,
we omit code generation for those parts of the applica-
tion which are cumbersome to define completely in the
model — like the implementation of the class operations
— or which are traditionally better performed manually,
like the concrete user interface realization and the me-
dia production. However, for those parts we generate
placeholders to be just filled out in the authoring tool
or development tool of the respective target platform
(e.g. Flash).

A very abstract view on the integration of applica-
tion logic, media elements, and user interface is pro-
vided in figure 8. This depicts the essence of the con-
cept elaborated by the development of MML. It can be
derived directly from the MML model elements: me-
dia components represent application entities; this is
modeled by MediaRepresentation relationships. User
Interface components also represent application enti-
ties which is modeled by UIRepresentaion relation-
ships. The media components can realize user inter-

Application
Entities
represﬁ %resent
Media partialy AbstractUl
Components |:“> Components

Figure 8. Interrelations between application
logic, media, and user interface

face components which is modeled by ATURealization
relationships.

7 Conclusion and Outlook

In the current paper we introduce MML a platform-
independent visual modeling language for the design
and model-driven development of multimedia applica-
tions. MML integrates two different research lines: on
the one hand application oriented approaches, in par-
ticular our work in [7], and on the other hand user
interface oriented approaches as discussed in [12].

The resulting modeling language differs from exist-
ing approaches in large parts: while the scene model
stays similar to [7] (section 3), the application struc-
ture has to be adapted to enable the integrated ap-
proach (section 2). The presentation model from [7] is
replaced by an abstract user interface model according
to the issues discussed in [12] (section 4). Finally, we
contribute an interaction model which is illustrated by
a comprehensible example (section 5).

Beside the modeling language itself, the main gen-
eral contribution of the paper lie in the proposal of a
design process for multimedia applications (section 6).
It aims to bridge the gap between requirements and
analysis, which has ever been one of the core problems
in multimedia application development. In particular
we provide a structured method for the integration of
the different design tasks — software design, user inter-
face design, and media design — during the develop-
ment. In general, the platform-independent language
MML may provide a contribution for a better overall
understanding of multimedia applications.

Future work will aim for the validation and refine-
ment of the MML modeling concepts. An example is
the development of more intuitive notations for some
parts of the model. Examples are descriptive icons for
the media components, the specification of a scene’s
class properties (i.e. attributes and operations) directly
within the scene model, and a more explicit specifica-

tion of objects in the interaction model. Such refine-
ments will help to increase the usability of the lan-
guage and its acceptance. We currently try to gain
more experience with the application of MML by var-
ious student projects, e.g. the annually course ”Mul-
timedia Programmierung” (multimedia programming)
where several student teams with six or seven persons
each develop multimedia applications of medium size.
For example in the last course they developed break-
out games with extensive functionality and multiplayer
support.

Regarding tool support we are currently developing
a modeling tool for MML based on the Eclipse plat-
form and related frameworks like the Eclipse Modeling
Framework. We aim for code generators for various
target platforms, like Flash or SVG/JavaScript. Pro-
totypical implementations for the modeling tool and a
SVG/JavaScript generator already exist. A code gen-
erator for Flash is currently under development. In
addition we currently develop a plug-in for the Flash
authoring tool to support the further processing of the
generated code skeletons, e.g. the navigation through
the generated application code according to the MML
model.

References

[1] T. Arndt. The Evolving Role of Software Engineer-
ing in the Production of Multimedia Applications . In
IEEE International Conference on Multimedia Com-
puting and Systems (ICMCS) 1999 Proceedings. IEEE
Computer Society, 1 edition, 1999.

[2] A. Bianchi, P. Bottoni, and P. Mussio. Issues in De-
sign and Implementation of Multimedia Software Sys-
tems. In Proceedings of IEEE International Confer-
ence on Multimedia Computing and Systems (ICMCS
’99), Florence, Italy, Volume I, pages 91-96. IEEE
Computer Society, 1999.

[3] P. P. da Silva and N. W. Paton. UMLi: The Unified
Modeling Language for Interactive Applications. In
A. Evans, S. Kent, and B. Selic, editors, UML 2000 -
The Unified Modeling Language. Advancing the Stan-
dard. Third International Conference, York, UK, Oc-
tober 2000, Proceedings, volume 1939, pages 117-132.
Springer, 2000.

[4] G. Engels and S. Sauer. Object-oriented Modeling
of Multimedia Applications. In S. K. Chang, edi-
tor, Handbook of Software Engineering and Knowledge
Engineering, volume 2, pages 21-53. World Scientific,
Singapore, 2002.

[6] J. Gémez, C. Cachero, and O. Pastor. Conceptual
Modeling of Device-Independent Web Applications.
IEEE MultiMedia, 8(2):26-39, 2001.

[6] A. Hannington and R. Karl. Towards a Taxon-
omy for Guiding Multimedia Application Develop-

(8]

(9]

[10]

(1]

[12]

(13]

[14]

(15]

[16]

(17]

ment. In 9th Asia-Pacific Software Engineering Con-
ference (APSEC 2002), 4-6 December 2002, Gold
Coast, Queensland, Australia. IEEE Computer Soci-

ety, 2002.

H. HuBmann and A. Pleufl. Model-Driven Develop-
ment of Multimedia Applications. In Talk at 'The
Monterey Workshop 2004 - Workshop on Software En-
gineering Tools: Compatibility and Integration’, Sub-
mitted for Proceedings. 2004.

N. Koch and A. Kraus. Towards a Common Meta-
modell for the Development of Web Appliactions. In
J. M. C. Lovelle, B. M. G. Rodrguez, L. J. Aguilar,
J. E. L. Gayo, and M. d. P. P. Ruz, editors, Web
Engineering, International Conference, ICWE 20083,
Oviedo, Spain, July 14-18, 2003, Proceedings, volume
2722 of Lecture Notes in Computer Science. Springer,
2003.

P.-A. Muller, P. Studer, and J. Bézivin. Platform In-
dependent Web Application Modeling. In P. Stevens,
J. Whittle, and G. Booch, editors, UML 2003 - The
Unified Modeling Language, Modeling Languages and
Applications, 6th International Conference, San Fran-
cisco, CA, USA, October 20-24, 2003, Proceedings,
Lecture Notes in Computer Science. Springer, 2003.
Object Management Group. UML 2.0 Superstructure
Final Adopted Specification , 2004.

F. Paterné, C. Mancini, and S. Meniconi. Concur-
TaskTrees: A Diagrammatic Notation for Specify-
ing Task Models. In S. Howard, J. Hammond, and
G. Lindgaard, editors, Proceedings Interact’97. Chap-
man & Hall, 1997.

A. Pleufl. Modeling the User Interface of Multimedia
Applications. In L. Briand and C. Williams, editors,
ACM/IEEE 8th International Conference on Model
Driven Engineering Languages and Systems (MoDELS
2005), volume 3731 of Lecture Notes in Computer Sci-

ence. Springer, 2005.

A. Rahardja. Multimedia Systems Design: A Software
Engineering Perspective. In International Conference
on Computers and Education (ICCE) 95 Proceedings.
IEEE Computer Society, 1995.

S. Sauer and G. Engels. Extending UML for Mod-
eling of Multimedia Applications. In M. Hirakawa
and P. Mussio, editors, IEEE Symposium on Visual
Languages 1999 Proceedings. IEEE Computer Society,
1999.

P. Szekely. Retrospective and Challenges for Model-
Based Interface Development. In J. Vanderdonckt,
editor, Computer-Aided Design of User Interfaces.
Presses Universitaires de Namur, Namur, Belgium,
1996.

H. Traetteberg. Model-based User Interface Design.
PhD thesis, Norwegian University of Science and Tech-
nology, Oslo, 2002.

J. Van den Bergh and K. Coninx. Towards Mod-
eling Context-Sensitive Interactive Applications: the
Context-Sensitive User Interface Profile (CUP). In
ACM Symposium on Software Visualization (SoftVis
2005), volume 1. ACM Press, 2005.

