Modeling the User Interface of
Multimedia Applications

Andreas Pleuf

Institut fiir Informatik, Ludwig-Maximilians-Universitat Miinchen
Munich, Germany
andreas.pleuss@ifi.lmu.de
http://wuw.medien.ifi.lmu.de

Abstract. Multimedia applications are a branch of software develop-
ment with growing importance. Typical application areas are training
applications and simulations, infotainment systems - e.g. in cars - or
computer games. However, there is still a lack of tailored concepts for
a structured development of this kind of application. The current pa-
per proposes a modeling approach for the user interface of multimedia
applications with the goal of a model-driven development. We identify
the special properties of multimedia application development and the
resulting aspects to be covered by the user interface model. Existing
conventional user interface modeling approaches are not sufficient, as
they do not cover the media-specific aspects of the application. However,
a multimedia application usually includes conventional user interface el-
ements as well. Thus, we first propose a solution for the media-specific
part. Second, we elaborate an integration of our approach with existing
conventional approaches. Finally, we discuss the overall model-driven de-
velopment approach and outline its benefits.

1 Introduction

Multimedia applications are an application domain with still growing impor-
tance. In typical application areas, like training and simulation software or com-
puter games, the intensive usage of multimedia is already established since many
years. Additionally, in the last years the production of sophisticated user inter-
faces became more and more common even in other applications areas. Often
cited examples are information systems with an emphasis on a pleasing and en-
tertaining user interface, so called infotainment systems. Modern cars contain
such applications to provide integrated access on the car’s entertainment, com-
fort and navigation functionality. For a classification of multimedia applications
see e.g. [1], [2].

The extract of the most common definitions of the term multimedia appli-
cation postulates an interactive application integrating at least a temporal and
a discrete media type. Discrete media refers to media which does not change
over time, like a still image, while temporal media is time dependent like audio
or video. As today a high amount of software is compliant to this definition we

2 Andreas Pleuf

restrict this for the purpose of this paper: First, the usage of media objects is
a core feature of the application, including also complex media types like video
and animation. (Animation refers here to graphics which changes over the time
in any way). Second, the application provides sophisticated interaction associ-
ated with application logic. Purely document-oriented software, i.e. a (static)
hypertext document, is not in the main focus of this paper.

The development of multimedia applications is characterized by the integra-
tion of knowledge, tools, and experts from two different areas: software engineer-
ing and media design. While requirements analysis is performed analogously to
conventional software and the implementation phase is supported by powerful
multimedia authoring tools (e.g. Macromedia Flash [3]), there is still a lack of
concepts to bridge the gap between analysis and implementation. Current multi-
media development methods, like described in [4], use mainly informal methods
with emphasis on media production and design. Concepts for the structured in-
tegration of the application logic and the consideration of software engineering
principles are still missing, although they are heavily claimed by various research
contributions like [5], [6], [7], [8]. This results in badly structured applications,
where maintenance and extension requires exceeding effort, although changes of
requirements are also common for this type of application [9]. Common software
engineering methods, like UML-based design methods, are not sufficient, as they
do not cover media integration and user interface design [2], [10], [11].

Early approaches to address this problem focus on single specific aspects
of a multimedia application, in particular synchronization (see [12], [13]), or
very specific application domains like [14]. The first comprehensive approach is
OMMMA (Object-oriented Modeling of Multimedia Applications, [10], [15]) which
provides a design model for multimedia applications based on UML. Based on
OMMMA, we propose in [16] further refinements and enhancements enabling a
model-driven development of multimedia applications.

The current paper continues the research in [16], where we described an
overall frame for model-driven development of multimedia applications and the
relationships between the different views of a multimedia application model.
These views are the static structure (i.e. the domain model), the user interface,
the interaction, and the overall temporal structure (i.e. coarse-grained program
flow). The current paper takes one of these views — the user interface, which is
probably the most important and extensive view — and goes into the details.

We first discuss in detail the required aspects to be covered by a user inter-
face model for multimedia applications. While existing work focuses only on the
media-specific user interface elements, we take into account, that usually also
conventional user tasks are part of a multimedia application. Thus, we consider
in addition the existing task-based user interface modeling approaches for con-
ventional widget based applications. On that base we first propose a detailed and
platform-independent modeling approach for the media-specific modeling part.
Afterwards, we elaborate the integration with the required parts from conven-
tional task-based user interface models. Finally, we discuss the resulting overall
model-driven development approach for multimedia applications.

Modeling the User Interface for Multimedia Applications 3

The paper is structured as follows: section 2 introduces conventional ap-
proaches for user interface modeling. In section 3 we discuss in detail the re-
quirements for multimedia applications and how they affect the concepts from
conventional user interface modeling. On that base, we discuss in section 4 the
required model elements for the media-specific part and propose a notation. In
section 5 the media-specific part of section 4 is integrated with the required
elements from conventional task-based modeling. We discuss the overall model-
driven approach in section 6. Section 7 provides the conclusions and the outlook.

2 Conventional User Interface Modeling

There is already a good understanding of the basic principles for modeling user
interfaces. This section briefly describes the basic concepts based on the detailed
overview provided in [17], followed by the introduction of a concrete approach,
UMLi [18], which we use as base for the further work in this paper.

First work on user interface modeling started already in the 1980’s, e.g. [19].
The main problem of early approaches was that they emerged either from the
engineering domain or from the UI designer domain (see [11]) — a similar problem
as addressed in this paper for multimedia applications. Advanced approaches
integrate the both views. They usually base on a conventional domain model,
like UML class diagrams, as well as on a task model, like ConcurTaskTrees [20].
The task model has its origins in the human-computer-interaction community.
It represents the user’s tasks and decomposes them hierarchically into subtasks,
down to primitive actions on the user interface. Task and domain model are
usually modeled during analysis.

The abstract UI model describes the user interface in an abstract and platform-
independent way. It consists of three different kinds of elements: Abstract inter-
action objects allow primitive user actions like invoking an action or selecting
an element from a list. Information elements present information to the user,
which can be either from the domain model or additional information like a label
text. Interaction objects and information elements are assigned to presentation
units, which represent an abstraction of windows on the screen. The elements
are derived from the task model and are related to the domain model either by
invoking actions or by presenting or manipulating information.

Finally, a concrete UI model is derived from the abstract Ul model. It con-
tains concrete user interface elements, usually widgets, and their concrete layout.
Often the concrete Ul model is realized by specialized implementation tools like
user interface builders. The transformation from abstract to concrete Ul model
can be done semi-automatically, e.g. rule-based like in [21].

In the following we briefly sketch a concrete approach, UMLi [18]. It applies
the mentioned principles of Ul modeling and realizes them as an extension of
UML. As today UML is a de-facto standard and widely understood, we use this
approach for the further work in this paper.

A presentation unit in the abstract Ul model in UMLIi contains the following
elements: inputters, which receive information from the user, displayers, which

4 Andreas Pleuf

Car Track

Damage Speed Round Help

Fig. 1. UMLi diagram for the racing game example

provide information to the user, editors, which are simultaneously inputters and
displayers, and action invokers, which receive events from the user (e.g. like a
button).

Figure 1 shows an UMLi diagram for the race screen of a racing game applica-
tion. We use this example, as on the one hand it demonstrates all characteristics
of a multimedia application and on the other hand its requirements are easy to
understand without specific domain knowledge. During the race the user has to
steer the car over the track. In addition to the car and the track the application
displays information about the current status, like the car’s speed and damage,
and the number of completed rounds. Moreover, the user can leave the race to
view the application’s help. The UMLi diagram consists of a presentation unit
representing the race window (dashed lines). It contains the required user in-
terface elements. To display information about the car status and the current
round, we use displayers (represented by upward triangles). For the invocation
of the help window we use an action invoker (represented by the semi-overlapped
triangles). As the user constantly modifies the car’s position and orientation, we
decide to represent it by an editor (notated as a diamond) and the track by a dis-
player. (Another decision is also possible, as actually the car stays always in the
center of the screen while the track moves, but probably such decisions belong
rather to the concrete layout than to the task-based abstract layout modeled
with UMLi).

The behavior of the user interface elements, i.e. the dialogue, is modeled in
UMLi using UML activity diagrams. To describe the relationships between ac-
tions and user interface elements they use Object Flows. The difference between
plain UML and UMLi activity diagrams are stereotypes which mainly aim for a
more compact notation of constructs frequently occurring for user interfaces.

3 Required Aspects to Model

The foregoing section describes the established concepts for modeling a user
interface. The focus of those approaches lies only in user interfaces for ” conven-
tional” applications, like database applications. Their user interface objects are
restricted to standard objects, usually widgets, as explicitly stated e.g. in [17],
[18]. As this focus is not sufficient for multimedia applications we discuss in the
following section the required aspects for this specific domain.

Modeling the User Interface for Multimedia Applications 5

Section 3.1 discusses the aspects directly related to the heavy usage of media
objects. On that base, section 3.2 comes back to the aspects of conventional task
based user interfaces and examines whether and how they change in multimedia
applications.

3.1 Multimedia-Specific Aspects

The requirements are derived from the existing multimedia related modeling
approaches described in section 1, as well as from the methods and artifacts
mentioned in multimedia development related work like [4], [9].

Integration of specific media types. The core characteristic of a multimedia
application is the integration of different media types. The choice of a media type
specifies, on which perception channels information is presented to the user and
how the user can interact with it. Thus, it is a fundamental decision which media
type is used to achieve the optimal transmission of a given piece of information
to the user. Often the choice of media type is a basic requirement from the
customer, e.g. in a medical training application the customer may postulate to
have a human organ presented by a 3D animation. It may also be possible that
the choice of media type is already obliged by circumstances, like restriction of
resources or the media objects available from third parties.

The usage of the complex media types should also be specified as soon as
possible within the development process, as the production of media content
often takes much effort and time. Dependent on the chosen type of media, the
respective experts and tools need to be available.

The media type affects the other parts of the application, e.g. because of
its specific interaction behavior. In summary, the model should allow to specify
which concrete media objects to use in the application. We propose a solution
for this requirement in section 4.

Inner Structure of Media Objects. Complex media types often consist of
several sub-objects. For example an animation representing a car may consist of
sub-animations for doors and wheels, which may move independently. Besides,
also the whole car can move. Dependent of the sub-objects, they contain sub-
objects themselves.

A user interface model should allow specifying such an inner structure, when
the sub-objects have to be accessed by the program code of the application.
On the one hand, the media designer has to take into account which parts of a
media object should be accessed from code. Typically these parts are designed
as sub-components. In the example above typically the wheels themselves are
also designed as animations contained within the car animation. On the other
hand, the application code programmer has to know how to access the required
parts, e.g. their name and their path within the hierarchy of sub-objects. In
summary, the specification of the inner structure of media objects is required
to define the interface between application code and media objects and should

6 Andreas Pleuf

thus be supported by the modeling approach. We propose a solution for this
requirement in section 4.

Spatial User Interface Layout. An issue to discuss is the spatial user in-
terface layout. A vision of the layout can be the basic motivation for the whole
multimedia application. It can be the core of the customer’s requirements. For
example a customer has the idea of a racing game application, where the screen
shows a view on the track and in the foreground a specific instrument board.

On the other hand, it is contentious whether to include the spatial user inter-
face layout into a model. Clearly, the structure of the user interface is important,
e.g. which window contains which elements. This aspect is already covered by
conventional user interface models in an abstract way. Spatial layout would add
information about the size and position of elements. But this information can
lead to platform dependent models, as the screen size of the target platforms can
change significantly. Moreover, as demonstrated by conventional user interface
models, interaction objects are implemented for different platforms using differ-
ent widgets or probably different modes (e.g. on some devices auditory instead
of graphical messages).

Moreover, it is not clear, whether the (semi-)formal specification of size and
position adds valuable information to the model. To capture the vision of a
screen layout, usually no exact and absolute values are required. Quite contrary,
the final pixel precise adjustment is better performed in the implementation tool
anyway. To sketch the idea of the layout, informal and quickly to handle methods
are more suitable.

In summary, there is no urgent need for specifying the spatial layout in the
model. As it usually adds no further (formal) information, it can be viewed as
an additional optional view on the existing model. This additional view can be
addressed e.g. by layout sketches. The quick creation of optional layout sketches
can probably also be supported by an advanced modeling tool.

Synchronization. The temporal behavior of different time-dependent media
objects can be related to each other. An example is an animation which should
be synchronous with sound or a video which should start after another video has
finished. Such synchronization issues often affects other parts of the application
— e.g. other media objects or the program code — and should therefore be part
of the model.

In the meanwhile, UML offers various mechanisms to model temporal behav-
ior. Also activity diagrams, used for behavior modeling in UMLI, are suitable
to denote the order of media objects and whether they can be interrupted by
events. UML 2.0 also enables an advanced specification of temporal constraints.

3.2 Task-Related Aspects

Based on the media-specific requirements, the following section discusses the
consequences for the conventional task-based user interface elements from section
2.

Modeling the User Interface for Multimedia Applications 7

Interaction Objects. Media objects can act as interaction objects, e.g. the
user can click on an animation. However, there is still the need for conventional
interaction objects. A multimedia application usually contains also conventional
tasks. For example in the racing game application the user should be able to input
his name, invoke the help or cancel the application. Such tasks are often outside
the customer’s media-specific vision of the application. They also usually require
no specific media-type. In that case, conventional abstract interaction objects are
useful to stay independent of the target platform and even the modality. The
interaction may even be without any graphical design, e.g. just pressing a key on
the keyboard. The designer should not be forced to make such decisions when it
is not mandatory.

Another issue is that time-dependent media objects can invoke actions inde-
pendently from the user. They can trigger time-related events, e.g. when they are
interrupted or have finished. Dependent from the media type additional events
are possible, e.g. a moving animation can trigger an event when it touches an-
other animation or reaches a specific region on the screen.

In summary, abstract interaction objects should be part of the model. As
media objects may also act as interaction objects, the model must integrate
these two kinds of elements. Additionally, it must be considered that media
objects can invoke actions independently from the user. We propose a possible
solution in section 5.

Information Elements. All media objects present information to the user,
which can be static or derived from the domain model. Thus, media objects
act as information elements. To some extent, all information elements are also
media objects, as they provide their information of course using any media type
(e.g. text). However, for the same reasons as for interaction objects (see 3.2), the
model should also provide abstract information elements. Likewise, the model
must integrate media objects and abstract information objects in a consistent
way. In section 5 we propose a possible solution for those requirements.

Presentation Units. A multimedia application will usually show different pre-
sentation units, similar to conventional applications. An extension arises from
the dynamic nature of time-dependent media types like animation or video: they
add an internal state to the presentation unit. This takes effect, if for example
the presentation of the presentation unit is interrupted, e.g. to show a help win-
dow, and should be continued afterwards. A video or an animation should then
potentially resume the state which it had before the interruption.

A solution for this problem is already proposed in [16]: an extended presen-
tation unit is called sceme. A scene can have attributes and methods like usual
classes in UML diagrams. Attributes are used to realize the internal state of
a scene. The methods include special entry-methods, which are invoked when
the scene is entered. The initialization of a scene depends on the invoked entry-
method and the method’s parameters, which allow resuming the internal state.

8 Andreas Pleuf

4 Modeling the Media Objects

In section 3 we discussed the required aspects for the modeling approach. This
section discusses the different model elements (denoted in italics) to model these
aspects for the media-specific part.

4.1 Media Objects

As introduced in section 1 media types are classified into temporal media and
discrete media. Some properties, like synchronization, occur only for temporal
media objects. Discrete media types are images, graphics and text. The basic
temporal media types are audio, video and animation. Further we distinguish 2D
animation and 8D animation, because of their different structure. The produc-
tion of 3D graphics and animation usually requires specialized tools and experts
while 2D graphic creation is much simpler and even part of several multimedia
authoring tools (e.g. Macromedia Flash).

4.2 Inner Structure

According to section 3 it is necessary to define the inner structure of media ob-
jects, to enable their manipulation through program code. By definition, only
temporal media types can have a dynamic, code controlled inner structure. In
particular (interactive) animations are usually closely linked to program code.
Due to the complexity of 3D animation, several approaches to describe its struc-
ture already exist. We take them as base to derive the general concepts for our
purpose. Afterwards we briefly sketch the structure of 2D animation, audio, and
video.

Inner Structure of 3D Animation. A common concept in the 3D community
for the description of 3D animation is the so-called scene graph (it is important to
note that there is no direct relation to the scene concept described in 3.1). In the
following we base on our work in [22] where we describe a platform-independent
scene graph approach.

The nodes of a scene graph represent the visible, material 3D objects them-
selves as well as components affecting their appearance. The latter ones are light,
the current position of the viewer (referred to as camera), and predefined further
possible viewer positions (viewpoints). The spatial information itself is also rep-
resented by a node: a transformation node performs one or more transforming
operations — i.e. translation, scale, or rotation — to all its assigned sub-nodes.
The nodes are connected by directed relationships which define the object hier-
archy (usually as a tree). A transformation is always relative to its parent node,
i.e. if the parent node is moved, its inner transformations are still valid.

It is important for our purpose that only nodes, which have to be accessed
by application logic, are (explicitly) specified in our models. All other parts of
the inner structure are omitted as implicit parts of the nodes.

Modeling the User Interface for Multimedia Applications 9

If a node has multiple identical children (i.e. a car owns several wheels),
it can be denoted in a compact way by just specifying one of the child nodes
together with the actual number of children. Moreover, a keyword assigned to
the relationship denotes whether the multiple children nodes are separate copies
(keyword copy), i.e. can be modified separately, or whether they reference only
the same single object (keyword ref), i.e. they are always exactly identical.

Inner Structure of 2D Animation. The structure of 2D animations can be
derived from the 3D animations. Light, camera and viewpoints are not relevant
for 2D level. The remaining elements are 2D objects and transformations. The
shapes contained in an animation can be animations themselves or static graph-
ics. The latter ones are not relevant for our purpose, as we here specify only
nodes which are manipulated through code.

Figure 2 shows the main model elements for the inner structure of 2D and
3D animations.

3DAnimation
+child +hild
| 3DPart 2DPart
+parentv wa Z} % +parent
‘ 2DAnimation 2DTransformation
3DObject Light Camera
3DTransformation Viewpoint

Fig. 2. Simplified metamodel for inner structure of 2D and 3D animation

Inner Structure of Audio and Video. The content of audio and video
is rarely directly manipulated by program code. The general concepts can be
summarized as follows: Audio can be composed of several tracks, e.g. for a left
and a right speaker. Typical manipulations are the application of filters or the
change of volume for one or more tracks. Moreover, an audio object can be
composed of several samples, i.e. parts within its local timeline. Most actions
on audio are time-related, e.g. jumping to a specific point on the timeline (cue
point). To be independent from concrete audio objects we specify cue points
by the semantics of their name (instead of defining concrete time values). The
mapping from a cue point to a concrete time value can then be done during the
deployment of the audio object, e.g. by the audio designer. Video can be handled
in analogous way.

10 Andreas Pleuf

4.3 Example.

Figure 3 shows the media-specific part of the racing game example from section
2. The track is represented by an animation. It contains additional animations
for obstacles and for the car. We clearly indicate the inner sub-objects here in the
diagram by placing them within their topmost parent object. The car animation
contains two front wheels. The inner structure is only specified insofar as required
for the application code. For example the front wheels should be moved whenever
the car drives through a corner. The annotations at the relationship between
Car and FrontWheels specify that there are two front wheels which behave
identically (and have thus not to be implemented as two independent objects).

Additionally the application should provide a cockpit view for the user dis-
playing the current status of the car. This is realized by animations for the
speedometer and the damage control. Moreover, the car is represented by sound.
The other user interface objects of this screen are not contained in the diagram,
as they require no specific media type.

<<Animation>> <<Sound>>
Track Car

<<Animation>> <<Animation>>

Car Obstacles <<Animation>>
Speed
2 <<ref>>

<<Animation>> <<Animation>>
FrontWheel Damage

Fig. 3. Media-specific user interface elements of a racing game application

5 Integration of Media-Specific Aspect and Task-Based
Aspects

In this section we integrate the media-specific part of the model from section
4 with the conventional task-based elements from section 2. In particular, we
discuss how to fulfill the requirements of section 3.

5.1 Media-Objects as Interaction Objects and Information
Elements

According to section 3 media objects are related to the conventional task-based
user interface elements. All of them act as information elements.

Whether and how a media object can act as interaction element depends on
the media type. Audio can usually not act as an interaction object, as it can

Modeling the User Interface for Multimedia Applications 11

not be manipulated. Of course it is possible to record and parse audio using a
microphone as accomplished at speech recognition. However, this does not relate
to playing an auditory media object, and is therefore not discussed in this paper.
The same holds for video, where a camera and gesture recognition are necessary
for user inputs.

However, all visual elements, including video, appear on the screen and can
therefore receive user events, e.g. when selected by a pointing device. Thus,
all visual objects can act as action invokers. As animations can dynamically
change their content dependent on the application logic, they can additionally
act as editors. An example is the car animation which represents e.g. the current
rotation of the car. The user manipulates the animation to edit the rotation
value.

5.2 Media-Objects as Trigger

As mentioned in section 3, temporal media objects can also invoke actions with-
out direct intervention from the user. It depends on the media type which types
of triggers are possible. The triggers can be derived from the 3D domain, where
they are represented by sensors. According to [22] common sensor types are
touch, prozimity, visibility, collision, and time. Touch and proximity sensors are
not relevant here, because they describe events related to interaction with the
user.

Visibility sensors trigger an event when objects became visible for the user.
Collision sensors react, if two objects collide with each others. Both can occur
for moving objects, i.e. (2D and 3D) animations.

Time events can occur for every temporal media type, namely when it reaches
a specific point on its local timeline. This can be the end of the timeline or a
specified cue point. All sensors can be assigned to a whole media object as well
as to sub-objects from its inner structure.

TemporalMedia Animation
TimeSensor VisiblitySensor CollisionSensor

Fig. 4. Simplified metamodel for sensors

5.3 Modeling Example

The example shows the integration of the task-based user interface elements from
figure 1 and the media objects specified in figure 3. The dashed arrows denote
that a media object realizes an abstract user interface element. An abstract

12 Andreas Pleuf

<<Animation>>
Track [T T TS

\\ Track
<<Animation>> <<Animation>> || 3 Collision
Car Obstacles

T
<<ref>>\L 2 B
<<Animation>> - i

FrontWheel T Car
/,/’/// r% Round
= I
<<Sound>> <<Animation>> <<Animation>> | ﬁ I:>
Car Speed Damage
Damage Help

Fig. 5. Integration of task-based and media-specific user interface elements for the
racing game example

user interface element can be realized by multiple media objects. If required for
clarity, abstract editor elements can be decomposed in inputter and displayer.
In the diagram, this would be possible for the car editor (but not shown here in
the diagram). Abstract user interface elements, which are not realized by media
objects, have to be realized during the implementation phase by appropriate
platform specific solutions (e.g. widgets).

To describe the behavior of the user interface elements, the UMLi activity
diagrams (see section 2) can used in the same way as before. The only differ-
ence are the sensors from media objects. They can be represented by UML Ac-
ceptEventActions to be used in the activity diagram. For example in figure 5 the
Obstacles animation provides a collision sensor, which waits for the occurrence
of collision events on the obstacles.

6 Model-Driven Development

In [16] we proposed the overall framework for a model-driven approach for mul-
timedia applications. The current paper extends it by a platform-independent
user interface model. It can be transformed into platform-specific models, using
the concepts of model driven development (e.g. [23]).

Typically, multimedia applications are implemented using authoring tools
like Macromedia Flash, which emphasize powerful support for the creation, in-
tegration, and deployment of media objects. However, they poorly support con-
cepts for structuring the application logic and control. For example, interactive
user interface elements often require the assignment of a script snippet to the
respective element. As a result, script snippets are scattered all over the appli-
cation. The consistent application of established software engineering concepts,
like e.g. the Model-View-Controller paradigm [24], is often only possible with
deep experience and under consideration of implementation ”tricks”.

Modeling the User Interface for Multimedia Applications 13

Considering the mentioned strength and weaknesses of multimedia authoring
tools, they seem to be dedicated to a model-driven approach. The model is much
better suited to design the overall application structure and behavior. On the
other hand, the authoring tools are suited best for realizing the media objects
and the concrete user interface implementation. As a consequence, we transform
the platform-independent models directly into code skeletons for the authoring
tools and omit platform-specific models. The code skeletons contain placeholders
(gaps or default objects) for those parts of the application, which are not specified
in the platform-independent model. The placeholders have then to be filled out
or replaced within the authoring tool.

The models proposed in [16] allow generating code for the complete overall
structure of the application. The structural model specifies classes, attributes,
and method signatures. The abstract user interface model allows the definition
of the relationships between user interface elements and the structural model.
The interaction model (corresponding to activity diagrams in UMLi) allows the
generation of event handling code for the user interface elements.

The implementation of the methods from the structural model (i.e. the
method bodies) is not part of the model. In multimedia applications methods
often affect the user interface. Thus, the purposes of those methods are not only
“hard” goals, like the correct computation of a value, but also ”soft” goals, like
esthetics. For example in a racing game a class Car provides methods which
are responsible for the user’s driving experience. Values and parameters often
have to be found out by "trial and error” and should be optimized for the target
platform. Thus, the methods are implemented directly within the authoring tool.

The media objects in the model are transformed into placeholders (e.g.
bounding boxes), which have then to be replaced in the authoring tool. The
abstract user interface objects can be transformed into widgets for the respec-
tive target platform. A rule based transformation, like in [21], is well supported
by the MDA concepts for transformations, like parameters and constraints, as
explained e.g. in [25].

7 Conclusion and Outlook

The approach described in this paper proposes a contribution for the model-
driven development of multimedia applications. As the user interface is usually
the core feature of this type of application, the concepts described in the paper
can constitute the basement of multimedia modeling.

Beside the contributions to our modeling approach, the main contributions
presented here lie in the general results for multimedia user interfaces. It is not
contentious that multimedia applications require specific solutions addressing
the heavy usage of media objects, as described by the existing research work.
But in addition, the user also has to perform conventional tasks for controlling
the application and its content. As a consequence we take here into account the
results from conventional user interface modeling and integrate them with the
media-specific aspects.

14 Andreas Pleuf

As a second general contribution we provide a fundamental discussion about
the involved requirements for modeling user interfaces containing media objects.
On that base we propose an abstract and platform-independent modeling ap-
proach for media objects and their inner structure.

As a consequence, the whole multimedia application models are platform-
independent. We propose a model-driven approach generating directly code
skeletons from the platform-independent models. The code skeletons contain
gaps which are completed in the authoring tool. It is fundamental that the
completion requires only tool abilities which the authoring tools are best in:
the creation and deployment of media objects, the user interface layout and
the platform specific definition of code on well-defined places predefined by the
platform-independent model.

We have specified a MOF-compliant metamodel for our approach. On that
base we have built a modeling tool for our models implemented on FEclipse [26]
and related technologies like the Eclipse Modeling Framework. The tool provides
simple tree-editors to create and edit models according to the metamodel. More
sophisticated graphical diagram editors are currently under development. More-
over, we have a code generator producing SVG/JavaScript code skeletons from
our models. At the moment we develop further generators, especially for Flash.
For the Flash authoring tool we currently develop a plug-in to provide additional
support for processing the generated code skeletons, e.g. navigation between the
gaps in the generated skeletons and support for a round-trip engineering.

We are preparing the evaluation of our approach in student projects. In
particular we provide an annual teaching course ” Multimedia-Programmierung”
(multimedia programming) where students have to develop in teamwork multi-
media applications of middle size, e.g. in the last year a multiplayer racing game
application implemented with Flash.

References

1. Tannenbaum, R.S.: Theoretical Foundations of Multimedia. Freeman, New York
1998

2. EJIanni)ngton7 A., Karl, R.: Towards a Taxonomy for Guiding Multimedia Applica-
tion Development. In: 9th Asia-Pacific Software Engineering Conference (APSEC
2002), 4-6 December 2002, Gold Coast, Queensland, Australia. IEEE Computer
Society (2002)

3. Macromedia: Macromedia, http://macromedia.com/ (2004)

4. Mallon, A.: The Multimedia Development Process, http://ourworld.
compuserve.com/homepages/adrian_mallon_multimedia/devmtpro.htm (1995)

5. Hirakawa, M.: Do Software Engineers Like Multimedia? In: IEEE International
Conference on Multimedia Computing and Systems (ICMCS) 1999 Proceedings.
Volume 1. IEEE Computer Society (1999) 85-90

6. Arndt, T.: The Evolving Role of Software Engineering in the Production of Multi-
media Applications . In: IEEE International Conference on Multimedia Computing
and Systems (ICMCS) 1999 Proceedings. 1 edn. IEEE Computer Society (1999)

7. Rahardja, A.: Multimedia Systems Design: A Software Engineering Perspective.
In: International Conference on Computers and Education (ICCE) 95 Proceedings.
IEEE Computer Society (1995)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.
26.

Modeling the User Interface for Multimedia Applications 15

. Bianchi, A., Bottoni, P., Mussio, P.: Issues in Design and Implementation of Mul-

timedia Software Systems. In: Proceedings of IEEE International Conference on
Multimedia Computing and Systems (ICMCS ’99), Florence, Italy, Volume I. IEEE
Computer Society (1999) 91-96

. Osswald, K.: Konzeptmanagement - Interaktive Medien - Interdisziplindre Pro-

jekte. Springer, Berlin (2002)

Engels, G., Sauer, S.: Object-oriented Modeling of Multimedia Applications. In
Chang, S.K., ed.: Handbook of Software Engineering and Knowledge Engineering.
Volume 2. World Scientific, Singapore (2002) 21-53

Treetteberg, H.: Model-based User Interface Design. PhD thesis, Norwegian Uni-
versity of Science and Technology, Oslo (2002)

Hirzalla, N., Falchuk, B., Karmouch, A.a.: A Temporal Model for Interactive
Multimedia Scenarios. IEEE MultiMedia 2 (1995) 24-31

Bertino, E., Ferrari, E.: Temporal Synchronization Models for Multimedia Data.
IEEE Transactions on Knowledge and Data Engineering 10 (1998) 612-631
Arya, A., Hamidzadeh, B.: Face Animation: A Case Study for Multimedia Mod-
eling and Specification Languages . In Deb, S., ed.: Multimedia Systems and
Content-Based Image Retrieval. Information Science Publishing (2003)

Sauer, S., Engels, G.: Extending UML for Modeling of Multimedia Applications.
In Hirakawa, M., Mussio, P., eds.: IEEE Symposium on Visual Languages 1999
Proceedings. IEEE Computer Society (1999)

Huflmann, H., Pleuf3, A.: Model-Driven Development of Multimedia Applications.
In: Talk at "The Monterey Workshop 2004 - Workshop on Software Engineering
Tools: Compatibility and Integration’, Submitted for Proceedings. (2004)
Szekely, P.: Retrospective and Challenges for Model-Based Interface Development.
In Vanderdonckt, J., ed.: Computer-Aided Design of User Interfaces. Presses Uni-
versitaires de Namur, Namur, Belgium (1996)

da Silva, P.P., Paton, N.W.: UMLi: The Unified Modeling Language for Interactive
Applications. In Evans, A., Kent, S., Selic, B., eds.: UML 2000 - The Unified Mod-
eling Language. Advancing the Standard. Third International Conference, York,
UK, October 2000, Proceedings. Volume 1939. Springer (2000) 117-132

Wiecha, C., Bennett, W., Boies, S.J., Gould, J.D.: Generating Highly Interactive
User Interfaces . In Bice, K., Lewis, C.H.a., eds.: Proceedings of the ACM CHI
89 Human Factors in Computing Systems Conference. April 30 - June 4, 1989,
Austin, Texas, New York (1989)

Paterné, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic No-
tation for Specifying Task Models. In Howard, S., Hammond, J., Lindgaard, G.,
eds.: Proceedings Interact’97. Chapman & Hall (1997)

Vanderdonckt, J.: Automatic generation of a user interface for highly interactive
business-oriented applications. In Plaisant, C., ed.: Companion Proceedings of
CHI’94. ACM Press, New York (1994)

Vitzthum, A., Pleu8, A.: SSIML: Designing Structure and Application Integration
of 3D Scenes. In: Proceedings of the tenth international conference on 3D Web
technology. ACM Press, New York (2005)

Frankel, D.S.: Model Driven Architecture. John Wiley (2003)

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
Oriented Software Architecture: A System Of Patterns. Volume 1. John Wiley,
West Sussex, England (1996)

Kleppe, A., Warmer, J., and, B.W.: MDA Explained. Addison-Wesley (2003)
Eclipse: The Eclipse Project, http://www.eclipse.org/ (2004)

