Prolog Server Faces —
A Declarative Framework for Dynamic Web Pages

Christian Schneikér Mohamed M. Khami& and Dietmar Seipél

1 Department of Computer Science,
University of Wiirzburg, Am Hubland, D — 97074 Wzburg, Germany
{christian.schneiker|di et mar. sei pel }@ni - wuer zburg. de

2 Department of Computer Science,
German University in Cairo, Egypt
mkham s89@nai | . com

Abstract. With Prolog Server Faces, we provide a stateful and event driven
framework for dynamic web applications written iR&L0OG and XmL. Follow-

ing the Mvc concept, theiew of web pages is fully specified in a compaauX
definition with statements for processing backend logicRoBOG. Our frame-
work provides an extensive, and easy to extend, tag library for comaL,
which will be expanded to XML with AJaXx support, and an TP server im-
plementation for the backend logic processing. Moreover, it is possiblsdo
existing XML files with PsF.

1 Introduction

In the last years, web applications have been a breakthiiawudient-server computing:
they arecross-platform compatible, since they operate through a web browser, they
requirevery little disk space on the client side, and they can byggraded andintegrated
with other web procedures easily. A web application takeldamL website from static
pages that only display content to interactive, dynamyagdinerated FiML web pages.

The HrTP protocol is very simple and mostlyc-based: the client sends a request,
the server replies with a response. Both request and respoagext-based messages,
each message contains a header, and sometimes a body. Hag&eschange is done
without saving or storing any information, making it a stass protocol.

HTTP excels at delivering static websites. For interactive watlieations, however,
it will be tedious and tiring to parse headers, understaedhttthen reply in another
header following the required format. For this reason, thednof server pages arose:
server-side code is stored on the web server; when a cligaésts a dynamic page, the
request is parsed, the requested page is processed, areavbiersplies with an FML
page, that can be understood by the client; these are pagesatgd by the server-side
code, which can change dynamically according to the webegifmn’s needs. Several
technologies have been introduced for server-side segpsiuch as Ap, PHP, and BP.

Scripting languages are easy to learn, and they can be mviitthe same files with
the HrmL, with interleaving HML and scripting code. However, this flexibility comes
at the expense of a well-designed application, maintaligtsecurity, and sometimes

itis slower, because the code is interpreted and not cothfilas is where frameworks
come into the picture: they facilitate the development pss¢ and they make the code
neater and better organized.

|

Neu

|Car 4

Manufacturer Color

| Honda | 2 | | White <
Model HP
| owic. [| |

| € vbrechen | | €Fok |

Figure 1. A web dialog generated from a database table and foreign key constraints

The aim of this paper is to useRBLOG for server side coding by implementing Pro-
log Server Faces, a server faces technology that usesbésed tag libraries [3, 16].
The library elements are transformed into standardr¥H pages using the bLOG
library FNQUERY for querying and transforming ML documents and data contain-
ers [12, 13]. JavaScript methods usingai with PROLOG predicates are implemented.
An HTTPweb server is implemented using amtp library for Swi-PROLOG. PSFsep-
arates the front-end and back-end, making design pattéeibdel-View-Controller
(Mvc) or Facade easily viable.

The paper is structured as follows: the next section givesoat ®verview of the
known web frameworks for implementing stateful applicatian Java, followed by
the approaches of combiningRBLOG with web applications. Section 3 describes our
implemented Prolog Server Faces technology. It shows #resfiormations of XL
elements to write short and reliable code. We will also dischiow to use Aax for
combining XML with nested ROLOG statements, as well as the integration with rela-
tional databases. Section 4 explainsFRvith the help of a case study, that shows the
easy implementation of applications according to thedvtoncept. The last section
gives a short conclusion and shows possible future work.

2 Related Work

The following section describes JavaServer Faces, a JavagbEramework based on
serviets and Fptechnology, for developing dynamic web pages with objetted
backend engines [6, 7, 15]. We will also talk about on Proleg/&r Pages, an approach
that combines FiML with PROLOG for web-based scripting, and explain two different
technigues which have been developed over the last yedrd][SThe combination of
functional logic programming and web interfaces has bestudised in [4].

In general, with Server Faces it is possible to separateitheof web applications
from theirmodel andcontroller, according to the Mc concept. Server Pages, in con-
trast, just allows the developer to implement toatroller within the HTML code, as
with common web scripting languages likelP

2.1 JavaServer Faces (SF)

As a framework for server-side user interface componemnts Microsystems and other
companies initially released JavaServer Faces in 2004Séaver Faces useM{ for
implementing the view of web pages according to thedwtoncept. In contrast to static
HTML pages or 9p, JSF providesstateful web applicationspage templating or even
AJAx support and gives the ability to develop server applicatiatithin the object-
oriented programming language Java.

Jsrallows processing client-generated events, to alterstdtgomponents, making
them event-oriented. It includdscking beans, which synchronize Java objects to user
interface components. Unlike desktop programs, web-bapptications are expected
to be accessed from different client types, such as desktnpsers, cell phones, and
PDAs, EFprovides a flexible architecture allowing it to display campnts in altered
ways, and it also offers many validation techniques.

As a server-side technology, all pages requested by that diee preprocessed
by the server. Via HTP, every requested ML document is transformed to standard
XHTML, and nested calls to Java objects, which are specifiedéxpessi on language,
are processed. The following example showsaXdML element, which is transformed
to standard XHML. Thesel ect OneMenu element has an additional attributel ue
with a Java expression for setting the right value, whicle&rfrom a data container, a
Java Bean.

<h: sel ect OneMenu i d="sel ect Car" val ue="#{car Bean. currentCar}">
<f:selectltems val ue="#{carBean.carList}" />
</ h: sel ect OneMenu>

In this example, a list of cars is read from the Bean and adtgrth the values, a
set ofopt i on elements is generated. Thel ect OneMenu element is transformed to a
normal XHTML sel ect element, and necessary attributes likee andi d are added.
The resulting valid XHML page is transferred to the client and rendered by a browser.

<sel ect id="selectCar">
<option value="corolla">Corol | a</option> ...
</sel ect >

The framework uses standard Java classes to transform tenéats with com-
mon Java component tree operations. Even when the work Wbjgtboriented pro-
gramming languages andu(tree operations is hard to read and to debug, it makes it
possible to extend the core libraries for the transfornmatioore taglib) by writing new
classes and adding them to the library.

2.2 Prolog Server Pages (&)

For combining the features of logic programming and web thaggplications, some
approaches have been developed over the last years. TRese@®and HrmL script-
ing techniques allow the implementation adyinamic web pages; nevertheless it is not
possible to separate the program logic from the user irderéad it makes the code
hard to read. In this paper we want to discuss two major imefeations of Prolog
Server Pages, a technique very similar to JavaServer Pab&d allows inline RRo-
LOG scripting in HTML documents.

Psp Chunk Programming. In the first RROLOG implementation of Server Pages, a
programmer has to write #L elements within the RoLOG source code files while
chunks of ROLOG code are encapsulated lik€psp Chunk ?> [14]. A chunk can
consist of a sequence oRBLOG rules followed by a sequence oRBLOG directives
issuing RROLOG goals. This implementation forces the developer towalt e predi-
cates whenever something is desired as an output, eventtiie Blements. Standard
PROLOG goals are just interpreted as usual. Additionally, the gnegris mixed with
the declaration; this makes design and maintainabilitgiéiarand the developer will
have to duplicate the code if &Pchunk needs a predicate defined in a previous chunk.

The Pspserver passes HiL tags to standard output and interpretsdlPOG code
within the Pspelements in the standard way ®R®L0G. In the followingHel 1 0 Wor | d
example, the predicatg eet i ng_nessage defines the stringHel 1o Wrld!' . The
directive starting with?- issues a query which bindsel | o Wrl d!' to the variable
Xand writes it to standard output.

<htm > <body>
<?psp
greeting_message(' Hello World!").
?- greeting_nessage(X), wite(X). ?>
</ body> </htm >

The result is a standard¥iL document.
<ht nl ><body>Hel | 0 Wor | d! </ body></htn >

Pspwith General Server Pages.In the second implementation by Benjamin Johnston,
the aim of the Prolog Server Pages web-based scripting ayggwas to implement
dynamic web applications usingRBLOG, avoiding manual parsing of commorrML
elements within the source code [5].

The syntax for combining ML and RROLOG scripting elements in this imple-
mentation is comparable to that ofiP, Asp and Xp, using tags like<?, and, ?>,
which is standardized in the General Server Pages approaishallows having HmL
and RroLOG code in the same file; however, this might come at the expefindesign
problems, especially if the developer wants to maintainsigepattern throughout the
structure of his web application.

The following is another Prolog Server Pages examplédbto Wr | d. The pred-
icategreeting_noun holds the stringhr | d, and it is defined outside of theTiL

section. The begin and the end of theMl. code have to be marked with and*/,
respectively, which is necessary for thed.oG compiler and treats the element like
normal comments. Within this block, it is now possible totefPROLOG goals within
<?, Goal ,?> which the server will execute. Hebeis bound to' Worl d!’ . The re-
sult can be written to standard output witki?= Ter m ?> tags. IfTer mis bound, then
its value is written, otherwise just the wofdr mis written to standard output. In this
example, the stringHel | 0 '’ is written followed by Wr | d!’ from the Pspcode.

greeting_noun('Vrld!").
/*
<ht nl > <body>
<?, greeting_noun(X) ,?> Hello <?= X 7>
</ body> </htm >
*|

The result generated by th&BLOG server is similar to the previous example.

2.3 FNQUERY and FNTRANSFORM

For the transformations in our framework, we extensively the XviL query, transfor-
mation and update languag®&®UERY [12, 13], which is fully interleaved with ®1-
PrRoOLOG. Like with XPATH, itis possible to query complex structures with path expres
sions and axes. As an extension of &R, it is possible to select branches over deeply
nested structures. The sublanguagel RANSFORM, which extends XLT, allows to
transform XvL elements in ROLOG using normal syntax.

FNQUERY uses triples for representingvX documents. E.g., for the association
list As = [color:red, nodel:civic] of attribute/value pairsgars: As: Es repre-
sents an XiL element with the tagars; the contents can be a (possibly empty)
list of such triples.

The path language NPATH of FNQUERY is very similar to XRRTH. Compound
terms with the functof are used for selecting subelements of an element. The functo
@is used for selecting attribute values. E.g., the binardigege: = in the call

?- M: = doc(cars.xm)/car @uodel .

selects the value for the attributedel from the elementar in the XML document
cars. xm below and binds the result i

<cars>
<car id="corolla" nodel ="Corolla" />
<car id="civic" nodel="Cvic" />
<car id="city" model="City" />

</ cars>

It is even possible to query witlultiple location paths. The following expression
selects the attributeésli andmodel and forms pair§ld, M of the results:

?- Pair := doc(cars.xm)/car-[@d, @mdel].

The library NTRANSFORM is used for implementing transformations. In Sec-
tion 3.1, we will use callX ---> Y for transforming FN tripleX to other FN triplesy.

3 The Framework Prolog Server Faces (BF)

PsFis astateful andevent-driven framework that integrates logic programing in mod-
ern web applications. We are combining the differeapBpproaches described in Sec-
tion 2.2 for mixing common RoLOG with XHTML to developdynamic web pages
with the advantages ofs¥ for writing condensed XML. This XML will be expanded to
normal XHTML with connection to Xi1L documents and relational databases for data
handling. We provide an application programming interflarecombining an extended
HTTP server implemented inV8I-PROLOG with a huge and easy to extend tag library
for defining web pages in a compaciX structure. For the transformations ofvx
elements, we useNT RANSFORM

3.1 Standard PsF Transformations

Like in JsF, nearly every XH ML element can be written in a compact form with ad-
ditional attribute values, which read the data from commlata structures like term
structures, XiL documents, or even relational databases. In @# fRamework, we
have implemented theore tag library, which consists of tags like #mL form the
differenti nput element types, and of coursedi o buttons andel ect menus.

We want to exemplify the work with §XML files with the following code of a
single select menu, whose data are stored in an additiomal fe. The PBSFXML
page contains only two elements for defining the type of thectenenu as well as an
element with an RPATH expression, which handles the data for the different option
types, in this case the different car models.

<h: sel ect OneMenu i d="sel ect Car">
<f:selectltems val ue="#{doc(cars.xm}/car-[@d, @mdel]}" />
</ h: sel ect OneMenu>

The data can be read from either amXdocument or from ROLOG data struc-
tures. The transformation itself is handled by TRANSFORM, which is integrated in
our framework. When a client requests such a file, the sertenatically transforms
it to XHTML with one of its request handlers. The following code shovehsutrans-
formation fromsel ect OneMenu to sel ect elements:

X--->Y:-
X = "h:selectOneMenu’ : As_1:[Iteni,
Y = select: As_2:1tens.
% attributes
(Id:=X@d; Id="""),
As = [id:ld, nane:ld, size:1],
fn_association_lists union(As, As 1, As 2),
% subel ements
(Expression := |tem@al ue ; Expression ="'),
psf _eval uat e_expressi on(Expression, Pairs),
(foreach([V, M, Pairs), foreach(l, Itens) do

| = option:[value:V]:[M).

Firstly, the attribute list is extended by the attributésnane, andsi ze; if these were
already present, then the old values are kept. iThés taken fromX; if X does not
have an d, then it is set to the empty string as a default value. Segptitk opt i on
subelements are generated based on the path expressieraitributeval ue of I t em
In our example, the lidRai r s given by

[[corolla, "Corolla'], [civic, "Cvic'], [city, "Cty']]

is derived, since the path expression selects the attsbdteandnodel of the car el-
ements in the filears. xm . Finally, each paif V, M yields anopti on subelement.
FNTRANSFORMWOrks bottom-up, and there is no transformation rulestdrect | t ens
elements. Thus, these elements remain unchanged firstMdowlepending on the con-
text —in our cassel ect OneMenu — they are transformed to other elements.

The output of the transformation is valid XL code, which can be rendered by
the browser to a select menu with the different option eldsen

<select id="selectCar" nane="selectCar" size="1">
<option val ue="corol | a">Corol | a</ opti on>
<option val ue="civic">Givi c</option>
<option value="city">C ty</option>

</ sel ect>

3.2 Database Support

Web interfaces are often connected with a database. Therafe have extended the
valid lists of PsFattributes to specify the additionaype of elements; here,ype is set
todi al og to generate a user dialog automatically from the databasetste. In such a
case, an attributeal ue defines the database name we want to connect to and the tables
needed for the dialog definition.

For a dialog like in Figure 1, the transformation generateslact menu with the
table names of the database tables specified in the attubUte. Each different se-
lection of one of these tables in the select menu forces H@LBG server to read the
database schema and automatically generate a form elertbrdifferent input types
according to the schema; normal attributes result in siteydefield for inputs, foreign
key constraints construct other select menus. For theségfokey select menus, the
referenced tables are read and only valid values are set tod¢hu; the user cannot en-
ter wrong data. Of course, itis also possible to select &untalues from the referenced
table, other than just the different foreign key values, tndisplay them in the menu
to make the generated dialog more readable.

3.3 AJAax-Based User Interaction

To implement thecontroller — the backend logic of the Prolog Server Faces — we
need to handle user interactions from the web interface.sip P is possible to use
AJAX by calling RROLOG predicates from JavaScriptSP comes with some prede-
fined JavaScript functions, which can easily be includedhénXmL document with a
commonscri pt element. The two main functions for combining natived® 0G with

JavaScript and Aax aresendRequest PL(arg0, argl, ..., argN) forsending val-
ues fronTt or melements to the server asendRequest XM_(ar g0, argl, ..., argN
for complete XL elements. The argumeat g0 is the FRRoOLOG predicate to be called
by the server. The subsequent argumants, ..., argN 1 arethe parameters. The
last argumendr gN specifies the XiL id, which is refreshed with Aax after the servers
send the response. The second JavaScript function sengdeterdvL elements to the
server. Similar to the JavaScript function above, the figgiment is the predicate to be
called, while the last argument is theviX id to be refreshed.

For transmitting the different parameters, we use special X¥nvelopes. E.g., a
message of the typeend is used for sending a predicate with its parameters:

<nessage type="send"> <predicate>...</predicate>
<parameter>...</paraneter> ... <paraneter>...</paraneter>
</ message>

The server processes the message and responds with a newhatgel XHML ele-
ment, and the browser can now update using a JavaSariffunction.

4 Using the Mvc Concept for a Sudoku Solver

We have implemented a Sudoku solver based sr &hd two different open source
implementations of the backend logic iIR€L0G and Q_P, respectively. Although the
application can also be developed wittrJwith PSFit is possible to benefit from logic
programming, and it is possible to change the backend lagiog runtime.

Welcome to iSudoku Solver

Sudoku Board

Double click a cell for a hint
e

Solve

Figure 2. A sudoku solver web application developed with Prolog Server Faces

According to the M/c concept, the implementation will be devided into three main
parts. Themodel holds the default values of the different text fields of therugter-
face, and it is updated during each processing step fomgtohie entered values. On
page load, the data container is loaded, and the initiabgadwe compiled into the gen-
erated XH'ML web page. Each element can be transformed usMiDRANSFORMIN
PrROLOG or even in BFXML elements.

The second part is th@ew: the graphical user interface of the application. It is a
well-formed FBSXML page with the regular elements; thedy has few BFelements,
which will be expanded to XML during the transformation. We use different name-
spaces — liké andf — to distinguish them from the regular (X)L .

<h: fornmp
<f:tableGid col ums="9" rows="9"
val ue="#{doc(sudoku_data.xm)/cel | @al ue}" >
<h:input Text size="1" ondbl click="sendRequest PL(
"sudoku_hint’, this.id, this.id)"/>
</f:tableGid>
<input type="button" val ue="Sol ve"
oncl i ck="sendRequest XM.(" sol ve_sudoku’, 'view, 'view)"/>
</h:fornmp

This PsF code will generate a table grid with 81 text fields, like in trig 2, the values
are imported from the ML container mentioned above by providing an expression in
the attributeval ue, or if it is not desired to do so, one can exclude the attribltes
XHTML document which is generated from thedPX ML file consists of more than 400
lines of code; thus, makes it possible to generate complex web pages from short
and compact XiL code.

As it can be seen from the implementation, it is easy to useL®Gto solve prob-
lems and puzzles, and withsR it is possible to have a neat interface, and even a web
application. At the same time SR preserves well-formed code that can be logically di-
vided intoModel, View andController layers, which makes maintenance much easier.

The usage of Mc proves more powerful than an extra layer for the solver, aed t
implementation of the solver can be changed with very littbek of integration. Since
we have decided to use therlsyntax, it is possible use the same X documents for
Jsrand FsF, only the Aiax calls to Java methods have to be changed.

5 Conclusions and Future Work

We have introduced Prolog Server Faces, a framewordtdieful, event-driven web ap-
plication with Aiax support and RoLoGbackend logic. Our concept is fully integrated
in SwI-PROLOG, and it provides a hugeg library for XML element transformations
from PsFXML to standard XHML. The tag library can be easily extended to fit the
developer’s needs to implement reliable and easy to readnisefaces. We have also
introduced methods for combining the statelesstxtd pages with XL documents
for storing data or even accessing internablPOG term structures or databases. While
PsF uses the same ML elements assF, it is possible to use already developeskJ
interfaces and enhance them with the powerebPoc and Q_p.

PROLOG is a good choice when there is an aspiration for a short andismiode.
PsFhas added an interface for this powerful language: in agfdtth making it applica-
ble on the Internet, § makes it possible to useRPLOG engines in web applications.
Following the Mvc concept, the separation of thiew and thebackend logic, the con-
troller can be changed easily, even during runtime of the apgication.

In another project, we are combining the Xframework [9] with SvI-PROLOG. A

next step is to automatically convert user interfaces betvikese two technologies for
providing a platform-independend framework for graphaaplications in the field of

logic programming. It is even possible to parse natural dext generate thed?-X ML
structure for the web interface automatically [10]. Futurerk will consider adding
further functionality to BF, such as cookies and session management predicates, and
even developing validation tools.

References

11.

12.

13.

14.

15.

16.

. BOHM, A., SEIPEL, D., SCKMANN, A. \WETZKA, M.: SQUASH: A Tool for Designing,

Analyzing and Refactoring Relational Database Applications. Proc. 17th Intl. Conference
on Applications of Declarative Programming and Knowledge Manage(h€AP), 2007.

. CABEZA, D., HERMENEGILDO M., VARMA S., The PILLOW/CIAO Library for Inter-

net/\WWMWV Programming using Computational Logic Systems. Proc. of 1st Workshop on
Logic Programming Tools for INTERNET Applications, JICSLP’96, §9Bonn, pp 72-90.

. DENTI, E., O™MICINI, A., Riccl, A.: TUPROLOG: A Light-Weight Prolog for Internet Appli-

cations and Infrastructures. Lecture Notes in Computer Science, Springer, 2001

. HaNus, M.: Type-Oriented Construction of Web User Interfaces. Proc. 8th Intl. ACM SIG-

PLAN Conference on Principles and Practice of Declarative Progiag)fPPDP’06), 2006

. JOHNSTON, B.: Prolog Server Pagess, A Web Programming Language.

http://www.benjaminjohnston.com.au/template.prolog?t=psp May 20, 2010

. MANN Kito D.: Javaserver Facesin Action. Manning Publications Co., 2005.
. ORACLE Introducing Java Server Faces (JSF) to 4GL Developers. Oracle, 2006.
. PauLson, L. D.: Building Rich Web Applications with Ajax. IEEE Computer, 38(10):1417,

2005.

. PROTZENKO, J.: XUL Open Source Press, 2006
. SCHNEIKER, C.; SEIPEL, D.; WEGSTEIN W.; PRATOR, K.: Declarative Parsing and Anno-

tation of Electronic Dictionaries. Proc. 6th Intl. Workshop on Natural Language Processing
and Cognitive Science (NLPCS), 2009

SFHMI, A., KROENING, M.: WEBLS: A custom PROLOG rule engine for providing web-
based tech support. Technical report, Amzi! inc.

SEIPEL, D.: Processing XML-Documentsin Prolog. Proc. 17th Workshop on Logic Program-
ming (WLP) 2002

SEIPEL, D.; PRATOR, K.: XML Transformations Based on Logic Programming. Proc. 18th
Workshop on Logic Programming (WLP) 2005.

uclu, A, PuszTal, K., VANCEA, A.: Prolog Server Pages, 2003. Proc. of Roedunet Intl.
Conference, 2003.

SUN MICROSYSTEMS INC. Mojarra Javaserver Faces - JSF 2.0 Datasheet Sun Microsys-
tems, 2009.

WIELEMAKER, J., HLDEBRAND, M., VAN OSSENBRUGGEN J: Prolog as the Fundament
for Applications on the Semantic Web, Proc. of the ICLPO7 Workshop on Applications of
Logic Programming to the Web, Semantic Web and Semantic Web Servitd&SIAS),
2007.

