
Prolog Server Faces –
A Declarative Framework for Dynamic Web Pages

Christian Schneiker1, Mohamed M. Khamis2, and Dietmar Seipel1

1 Department of Computer Science,
University of Würzburg, Am Hubland, D – 97074 Ẅurzburg, Germany
{christian.schneiker|dietmar.seipel}@uni-wuerzburg.de

2 Department of Computer Science,
German University in Cairo, Egypt

mkhamis89@gmail.com

Abstract. With Prolog Server Faces, we provide a stateful and event driven
framework for dynamic web applications written in PROLOG and XML . Follow-
ing the MVC concept, theview of web pages is fully specified in a compact XML

definition with statements for processing backend logic in PROLOG. Our frame-
work provides an extensive, and easy to extend, tag library for compact XML ,
which will be expanded to XHTML with AJAX support, and an HTTP server im-
plementation for the backend logic processing. Moreover, it is possible touse
existing JSF-XML files with PSF.

1 Introduction

In the last years, web applications have been a breakthroughin client-server computing:
they arecross-platform compatible, since they operate through a web browser, they
requirevery little disk space on the client side, and they can beupgraded andintegrated
with other web procedures easily. A web application takes anHTML website from static
pages that only display content to interactive, dynamically generated HTML web pages.

The HTTP protocol is very simple and mostly TCP–based: the client sends a request,
the server replies with a response. Both request and response are text-based messages,
each message contains a header, and sometimes a body. The message exchange is done
without saving or storing any information, making it a stateless protocol.

HTTP excels at delivering static websites. For interactive web applications, however,
it will be tedious and tiring to parse headers, understand them, then reply in another
header following the required format. For this reason, the need of server pages arose:
server-side code is stored on the web server; when a client requests a dynamic page, the
request is parsed, the requested page is processed, and the server replies with an HTML

page, that can be understood by the client; these are pages generated by the server-side
code, which can change dynamically according to the web application’s needs. Several
technologies have been introduced for server-side scripting, such as ASP, PHP, and JSP.

Scripting languages are easy to learn, and they can be written in the same files with
the HTML , with interleaving HTML and scripting code. However, this flexibility comes
at the expense of a well-designed application, maintainability, security, and sometimes

it is slower, because the code is interpreted and not compiled. This is where frameworks
come into the picture: they facilitate the development process, and they make the code
neater and better organized.

Figure 1. A web dialog generated from a database table and foreign key constraints.

The aim of this paper is to use PROLOG for server side coding by implementing Pro-
log Server Faces, a server faces technology that uses XML -based tag libraries [3, 16].
The library elements are transformed into standard XHTML pages using the PROLOG

library FNQUERY for querying and transforming XML documents and data contain-
ers [12, 13]. JavaScript methods using AJAX with PROLOGpredicates are implemented.
An HTTP web server is implemented using an HTTP library for SWI-PROLOG. PSFsep-
arates the front-end and back-end, making design patterns like Model-View-Controller
(MVC) or Facade easily viable.

The paper is structured as follows: the next section gives a short overview of the
known web frameworks for implementing stateful applications in Java, followed by
the approaches of combining PROLOG with web applications. Section 3 describes our
implemented Prolog Server Faces technology. It shows the transformations of XML

elements to write short and reliable code. We will also discuss how to use AJAX for
combining XML with nested PROLOG statements, as well as the integration with rela-
tional databases. Section 4 explains PSF with the help of a case study, that shows the
easy implementation of applications according to the MVC concept. The last section
gives a short conclusion and shows possible future work.

2 Related Work

The following section describes JavaServer Faces, a Java EEweb framework based on
servlets and JSP technology, for developing dynamic web pages with object-oriented
backend engines [6, 7, 15]. We will also talk about on Prolog Server Pages, an approach
that combines HTML with PROLOG for web-based scripting, and explain two different
techniques which have been developed over the last years [5,14]. The combination of
functional logic programming and web interfaces has been discussed in [4].

In general, with Server Faces it is possible to separate theview of web applications
from theirmodel andcontroller, according to the MVC concept. Server Pages, in con-
trast, just allows the developer to implement thecontroller within the HTML code, as
with common web scripting languages like PHP.

2.1 JavaServer Faces (JSF)

As a framework for server-side user interface components, Sun Microsystems and other
companies initially released JavaServer Faces in 2004. JavaServer Faces use XML for
implementing the view of web pages according to the MVC concept. In contrast to static
HTML pages or JSP, JSF providesstateful web applications,page templating or even
AJAX support and gives the ability to develop server applications within the object-
oriented programming language Java.

JSFallows processing client-generated events, to alter states of components, making
them event-oriented. It includesbacking beans, which synchronize Java objects to user
interface components. Unlike desktop programs, web-basedapplications are expected
to be accessed from different client types, such as desktop browsers, cell phones, and
PDAs, JSF provides a flexible architecture allowing it to display components in altered
ways, and it also offers many validation techniques.

As a server-side technology, all pages requested by the client are preprocessed
by the server. Via HTTP, every requested XML document is transformed to standard
XHTML , and nested calls to Java objects, which are specified in anexpression language,
are processed. The following example shows a JSF-XML element, which is transformed
to standard XHTML . TheselectOneMenu element has an additional attributevalue
with a Java expression for setting the right value, which is read from a data container, a
Java Bean.

<h:selectOneMenu id="selectCar" value="#{carBean.currentCar}">
<f:selectItems value="#{carBean.carList}" />

</h:selectOneMenu>

In this example, a list of cars is read from the Bean and according to the values, a
set ofoption elements is generated. TheselectOneMenu element is transformed to a
normal XHTML select element, and necessary attributes likename andid are added.
The resulting valid XHTML page is transferred to the client and rendered by a browser.

<select id="selectCar">
<option value="corolla">Corolla</option> ...

</select>

The framework uses standard Java classes to transform the documents with com-
mon Java component tree operations. Even when the work with object-oriented pro-
gramming languages and XML tree operations is hard to read and to debug, it makes it
possible to extend the core libraries for the transformations (core taglib) by writing new
classes and adding them to the library.

2.2 Prolog Server Pages (PSP)

For combining the features of logic programming and web based applications, some
approaches have been developed over the last years. These PROLOG and HTML script-
ing techniques allow the implementation ofdynamic web pages; nevertheless it is not
possible to separate the program logic from the user interface and it makes the code
hard to read. In this paper we want to discuss two major implementations of Prolog
Server Pages, a technique very similar to JavaServer Pages,which allows inline PRO-
LOG scripting in HTML documents.

PSP Chunk Programming. In the first PROLOG implementation of Server Pages, a
programmer has to write HTML elements within the PROLOG source code files while
chunks of PROLOG code are encapsulated like<?psp Chunk ?> [14]. A chunk can
consist of a sequence of PROLOG rules followed by a sequence of PROLOG directives
issuing PROLOG goals. This implementation forces the developer to callwrite predi-
cates whenever something is desired as an output, even the HTML elements. Standard
PROLOG goals are just interpreted as usual. Additionally, the querying is mixed with
the declaration; this makes design and maintainability harder, and the developer will
have to duplicate the code if a PSPchunk needs a predicate defined in a previous chunk.

The PSP server passes HTML tags to standard output and interprets PROLOG code
within the PSPelements in the standard way of PROLOG. In the followingHello World
example, the predicategreeting_message defines the string’Hello World!’. The
directive starting with?- issues a query which binds’Hello World!’ to the variable
X and writes it to standard output.

<html> <body>
<?psp

greeting_message(’Hello World!’).
?- greeting_message(X), write(X). ?>

</body> </html>

The result is a standard HTML document.

<html><body>Hello World!</body></html>

PSPwith General Server Pages.In the second implementation by Benjamin Johnston,
the aim of the Prolog Server Pages web-based scripting language was to implement
dynamic web applications using PROLOG, avoiding manual parsing of common HTML

elements within the source code [5].
The syntax for combining HTML and PROLOG scripting elements in this imple-

mentation is comparable to that of PHP, ASP and JSP, using tags like<?, and,?>,
which is standardized in the General Server Pages approach.This allows having HTML

and PROLOG code in the same file; however, this might come at the expense of design
problems, especially if the developer wants to maintain a design pattern throughout the
structure of his web application.

The following is another Prolog Server Pages example forHello World. The pred-
icategreeting_noun holds the stringWorld, and it is defined outside of the HTML

section. The begin and the end of the HTML code have to be marked with/* and*/,
respectively, which is necessary for the PROLOG compiler and treats the element like
normal comments. Within this block, it is now possible to write PROLOG goals within
<?, Goal ,?> which the server will execute. HereX is bound to’World!’. The re-
sult can be written to standard output within<?= Term ?> tags. IfTerm is bound, then
its value is written, otherwise just the wordTerm is written to standard output. In this
example, the string’Hello ’ is written followed by’World!’ from the PSPcode.

greeting_noun(’World!’).
/*
<html> <body>

<?, greeting_noun(X) ,?> Hello <?= X ?>
</body> </html>
*/

The result generated by the PROLOG server is similar to the previous example.

2.3 FNQUERY and FNTRANSFORM

For the transformations in our framework, we extensively use the XML query, transfor-
mation and update language FNQUERY [12, 13], which is fully interleaved with SWI-
PROLOG. Like with XPATH, it is possible to query complex structures with path expres-
sions and axes. As an extension of XPATH, it is possible to select branches over deeply
nested structures. The sublanguage FNTRANSFORM, which extends XSLT, allows to
transform XML elements in PROLOG using normal syntax.

FNQUERY uses triples for representing XML documents. E.g., for the association
list As = [color:red, model:civic] of attribute/value pairs,cars:As:Es repre-
sents an XML element with the tagcars; the contentEs can be a (possibly empty)
list of such triples.

The path language FNPATH of FNQUERY is very similar to XPATH. Compound
terms with the functor/ are used for selecting subelements of an element. The functor
@ is used for selecting attribute values. E.g., the binary predicate:= in the call

?- M := doc(cars.xml)/car@model.

selects the value for the attributemodel from the elementcar in the XML document
cars.xml below and binds the result toM.

<cars>
<car id="corolla" model="Corolla" />
<car id="civic" model="Civic" />
<car id="city" model="City" />

</cars>

It is even possible to query withmultiple location paths. The following expression
selects the attributesid andmodel and forms pairs[Id, M] of the results:

?- Pair := doc(cars.xml)/car-[@id, @model].

The library FNTRANSFORM is used for implementing transformations. In Sec-
tion 3.1, we will use callsX ---> Y for transforming FN triplesX to other FN triplesY.

3 The Framework Prolog Server Faces (PSF)

PSF is astateful andevent-driven framework that integrates logic programing in mod-
ern web applications. We are combining the different PSPapproaches described in Sec-
tion 2.2 for mixing common PROLOG with XHTML to developdynamic web pages
with the advantages of JSF for writing condensed XML . This XML will be expanded to
normal XHTML with connection to XML documents and relational databases for data
handling. We provide an application programming interfacefor combining an extended
HTTP server implemented in SWI-PROLOG with a huge and easy to extend tag library
for defining web pages in a compact XML structure. For the transformations of XML

elements, we use FNTRANSFORM.

3.1 Standard PSF Transformations

Like in JSF, nearly every XHTML element can be written in a compact form with ad-
ditional attribute values, which read the data from complexdata structures like term
structures, XML documents, or even relational databases. In our PSF framework, we
have implemented thecore tag library, which consists of tags like HTML form, the
differentinput element types, and of courseradio buttons andselect menus.

We want to exemplify the work with PSF-XML files with the following code of a
single select menu, whose data are stored in an additional XML file. The PSF-XML

page contains only two elements for defining the type of the select menu as well as an
element with an FNPATH expression, which handles the data for the different option
types, in this case the different car models.

<h:selectOneMenu id="selectCar">
<f:selectItems value="#{doc(cars.xml}/car-[@id, @model]}" />

</h:selectOneMenu>

The data can be read from either an XML document or from PROLOG data struc-
tures. The transformation itself is handled by FNTRANSFORM, which is integrated in
our framework. When a client requests such a file, the server automatically transforms
it to XHTML with one of its request handlers. The following code shows such a trans-
formation fromselectOneMenu to select elements:

X ---> Y :-
X = ’h:selectOneMenu’:As_1:[Item],
Y = select:As_2:Items.

% attributes
(Id := X@id ; Id = ’’),
As = [id:Id, name:Id, size:1],
fn_association_lists_union(As, As_1, As_2),

% subelements
(Expression := Item@value ; Expression = ’’),
psf_evaluate_expression(Expression, Pairs),
(foreach([V, M], Pairs), foreach(I, Items) do

I = option:[value:V]:[M]).

Firstly, the attribute list is extended by the attributesid, name, andsize; if these were
already present, then the old values are kept. Theid is taken fromX; if X does not
have anid, then it is set to the empty string as a default value. Secondly, theoption
subelements are generated based on the path expression in the attributevalue of Item.
In our example, the listPairs given by

[[corolla, ’Corolla’], [civic, ’Civic’], [city, ’City’]]

is derived, since the path expression selects the attributes id andmodel of the car el-
ements in the filecars.xml. Finally, each pair[V,M] yields anoption subelementI.
FNTRANSFORMworks bottom-up, and there is no transformation rule forselectItems
elements. Thus, these elements remain unchanged first. However, depending on the con-
text – in our caseselectOneMenu – they are transformed to other elements.

The output of the transformation is valid XHTML code, which can be rendered by
the browser to a select menu with the different option elements.

<select id="selectCar" name="selectCar" size="1">
<option value="corolla">Corolla</option>
<option value="civic">Civic</option>
<option value="city">City</option>

</select>

3.2 Database Support

Web interfaces are often connected with a database. Therefore, we have extended the
valid lists of PSF attributes to specify the additionaltype of elements; here,type is set
to dialog to generate a user dialog automatically from the database structure. In such a
case, an attributevalue defines the database name we want to connect to and the tables
needed for the dialog definition.

For a dialog like in Figure 1, the transformation generates aselect menu with the
table names of the database tables specified in the attributevalue. Each different se-
lection of one of these tables in the select menu forces the PROLOG server to read the
database schema and automatically generate a form element with different input types
according to the schema; normal attributes result in singletext field for inputs, foreign
key constraints construct other select menus. For these foreign key select menus, the
referenced tables are read and only valid values are set to the menu; the user cannot en-
ter wrong data. Of course, it is also possible to select further values from the referenced
table, other than just the different foreign key values, andto display them in the menu
to make the generated dialog more readable.

3.3 AJAX -Based User Interaction

To implement thecontroller – the backend logic of the Prolog Server Faces – we
need to handle user interactions from the web interface. In PSF, it is possible to use
AJAX by calling PROLOG predicates from JavaScript. PSF comes with some prede-
fined JavaScript functions, which can easily be included in the XML document with a
commonscript element. The two main functions for combining native PROLOG with

JavaScript and AJAX aresendRequestPL(arg0, arg1, ..., argN) for sending val-
ues fromform elements to the server andsendRequestXML(arg0, arg1, ..., argN)
for complete XML elements. The argumentarg0 is the PROLOG predicate to be called
by the server. The subsequent argumentsarg1, ..., argN-1 are the parameters. The
last argumentargN specifies the XML id, which is refreshed with AJAX after the servers
send the response. The second JavaScript function sends complete XML elements to the
server. Similar to the JavaScript function above, the first argument is the predicate to be
called, while the last argument is the XML id to be refreshed.

For transmitting the different parameters, we use special XML envelopes. E.g., a
message of the typesend is used for sending a predicate with its parameters:

<message type="send"> <predicate>...</predicate>
<parameter>...</parameter> ... <parameter>...</parameter>

</message>

The server processes the message and responds with a newly generated XHTML ele-
ment, and the browser can now update using a JavaScriptxhr function.

4 Using the MVC Concept for a Sudoku Solver

We have implemented a Sudoku solver based on PSF and two different open source
implementations of the backend logic in PROLOG and CLP, respectively. Although the
application can also be developed with JSF, with PSF it is possible to benefit from logic
programming, and it is possible to change the backend logic during runtime.

Figure 2. A sudoku solver web application developed with Prolog Server Faces

According to the MVC concept, the implementation will be devided into three main
parts. Themodel holds the default values of the different text fields of the user inter-
face, and it is updated during each processing step for storing the entered values. On
page load, the data container is loaded, and the initial values are compiled into the gen-
erated XHTML web page. Each element can be transformed using FNTRANSFORM in
PROLOG or even in PSF-XML elements.

The second part is theview: the graphical user interface of the application. It is a
well-formed PSF-XML page with the regular elements; thebody has few PSFelements,
which will be expanded to XHTML during the transformation. We use different name-
spaces – likeh andf – to distinguish them from the regular (X)HTML .

<h:form>
<f:tableGrid columns="9" rows="9"

value="#{doc(sudoku_data.xml)/cell@value}" >
<h:inputText size="1" ondblclick="sendRequestPL(

’sudoku_hint’, this.id, this.id)"/>
</f:tableGrid>
<input type="button" value="Solve"

onclick="sendRequestXML(’solve_sudoku’, ’view’, ’view’)"/>
</h:form>

This PSF code will generate a table grid with 81 text fields, like in Figure 2, the values
are imported from the XML container mentioned above by providing an expression in
the attributevalue, or if it is not desired to do so, one can exclude the attribute. The
XHTML document which is generated from the PSF-XML file consists of more than 400
lines of code; thus, PSF makes it possible to generate complex web pages from short
and compact XML code.

As it can be seen from the implementation, it is easy to use PROLOG to solve prob-
lems and puzzles, and with PSF, it is possible to have a neat interface, and even a web
application. At the same time, PSF preserves well-formed code that can be logically di-
vided intoModel, View andController layers, which makes maintenance much easier.

The usage of MVC proves more powerful than an extra layer for the solver, and the
implementation of the solver can be changed with very littlework of integration. Since
we have decided to use the JSF syntax, it is possible use the same XML documents for
JSF and PSF; only the AJAX calls to Java methods have to be changed.

5 Conclusions and Future Work

We have introduced Prolog Server Faces, a framework forstateful, event-driven web ap-
plication with AJAX support and PROLOGbackend logic. Our concept is fully integrated
in SWI-PROLOG, and it provides a hugetag library for XML element transformations
from PSF-XML to standard XHTML . The tag library can be easily extended to fit the
developer’s needs to implement reliable and easy to read user interfaces. We have also
introduced methods for combining the stateless XHTML pages with XML documents
for storing data or even accessing internal PROLOG term structures or databases. While
PSF uses the same XML elements as JSF, it is possible to use already developed JSF

interfaces and enhance them with the power of PROLOG and CLP.
PROLOG is a good choice when there is an aspiration for a short and concise code.

PSFhas added an interface for this powerful language: in addition to making it applica-
ble on the Internet, PSF makes it possible to use PROLOG engines in web applications.
Following the MVC concept, the separation of theview and thebackend logic, the con-
troller can be changed easily, even during runtime of the webapplication.

In another project, we are combining the XUL framework [9] with SWI-PROLOG. A
next step is to automatically convert user interfaces between these two technologies for
providing a platform-independend framework for graphicalapplications in the field of
logic programming. It is even possible to parse natural textand generate the PSF-XML

structure for the web interface automatically [10]. Futurework will consider adding
further functionality to PSF, such as cookies and session management predicates, and
even developing validation tools.

References

1. BÖHM, A., SEIPEL, D., SICKMANN , A. ,WETZKA, M.: SQUASH: A Tool for Designing,
Analyzing and Refactoring Relational Database Applications. Proc. 17th Intl. Conference
on Applications of Declarative Programming and Knowledge Management (INAP), 2007.

2. CABEZA, D., HERMENEGILDO M., VARMA S., The PILL OW/CIAO Library for Inter-
net/WWW Programming using Computational Logic Systems. Proc. of 1st Workshop on
Logic Programming Tools for INTERNET Applications, JICSLP’96, 1996, Bonn, pp 72–90.

3. DENTI, E., OMICINI , A., RICCI, A.: TUPROLOG: A Light-Weight Prolog for Internet Appli-
cations and Infrastructures. Lecture Notes in Computer Science, Springer, 2001

4. HANUS, M.: Type-Oriented Construction of Web User Interfaces. Proc. 8th Intl. ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming, (PPDP’06), 2006

5. JOHNSTON, B.: Prolog Server Pages, A Web Programming Language.
http://www.benjaminjohnston.com.au/template.prolog?t=psp May 20, 2010

6. MANN Kito D.: Javaserver Faces in Action. Manning Publications Co., 2005.
7. ORACLE Introducing Java Server Faces (JSF) to 4GL Developers. Oracle, 2006.
8. PAULSON, L. D.: Building Rich Web Applications with Ajax. IEEE Computer, 38(10):1417,

2005.
9. PROTZENKO, J.:XUL Open Source Press, 2006

10. SCHNEIKER, C.; SEIPEL, D.; WEGSTEIN, W.; PRÄTOR, K.: Declarative Parsing and Anno-
tation of Electronic Dictionaries. Proc. 6th Intl. Workshop on Natural Language Processing
and Cognitive Science (NLPCS), 2009

11. SEHMI, A., KROENING, M.: WEBLS: A custom PROLOG rule engine for providing web-
based tech support. Technical report, Amzi! inc.

12. SEIPEL, D.: Processing XML-Documents in Prolog. Proc. 17th Workshop on Logic Program-
ming (WLP) 2002

13. SEIPEL, D.; PRÄTOR, K.: XML Transformations Based on Logic Programming. Proc. 18th
Workshop on Logic Programming (WLP) 2005.

14. SUCIU, A., PUSZTAI, K., VANCEA, A.: Prolog Server Pages, 2003. Proc. of Roedunet Intl.
Conference, 2003.

15. SUN M ICROSYSTEMS, INC. Mojarra Javaserver Faces - JSF 2.0 Datasheet Sun Microsys-
tems, 2009.

16. WIELEMAKER, J., HILDEBRAND, M., VAN OSSENBRUGGEN, J: Prolog as the Fundament
for Applications on the Semantic Web, Proc. of the ICLP07 Workshop on Applications of
Logic Programming to the Web, Semantic Web and Semantic Web Services (ALPSWS),
2007.

