
Towards a Structured Design of Augmented Reality Applications

Arnd Vitzthum
University of Munich, Department of Computer Science, Media Informatics Group, Amalienstrasse 17, 80333 Munich,

Germany
e-mail: arnd.vitzthum@ifi.lmu.de

ABSTRACT
Mixed Reality (MR) and especially Augmented Reality (AR)
technologies provide high potentials for future applications.
However, a lack of concepts and tools for a structured design of
AR systems can be noticed. Our approach to address this problem
is a visual language for the abstract specification of AR
applications, called SSIML/AR. We plan to extend this language
to enable the description of relations between AR user interface
elements. Such relations can provide information about the user’s
current actions.

CR Categories: D.2.2 [Software Engineering]: Design Tools and
Techniques---Computer-aided software engineering (CASE),
Object-oriented design methods, User interfaces; I.3.6 [Computer
Graphics] Methodology and Techniques---Languages; H.5.1
[Information Interfaces and Presentation] Multimedia Information
Systems---Artificial, augmented, and virtual realities; H.5.2.
[Information Interfaces and Presentation] User Interfaces---
Graphical User Interfaces.

Keywords: Augmented Reality, AR user interface, task
modelling, 3D software design, scene modelling, SSIML,
SSIML/AR

1 INTRODUCTION
Augmented Reality (AR) plays a key role within the field of
Mixed Reality (MR). AR technologies provide high potentials for
domains such as medicine or assembly, maintenance and repair.
In AR, the real world around the user is enriched with virtual
information. Augmented Reality Systems superimpose real
objects with virtual information in 3D and in real-time [1].

The development of an AR system often poses a challenge to
the developers. In the following we present three important
reasons for this situation.

1. The creation of 3D content often requires the use of complex

3D authoring environments.
2. Program code and 3D content have to be integrated. Since

3D content and code are commonly developed by different
authors using completely different tools, it is possible that
code and content become inconsistent.

3. Real objects have to be integrated into the AR user interface.
Virtual objects have to be aligned properly with real objects.

Until now, most AR research effort was spent into base

technologies such as tracking and rendering. AR systems are often
developed at implementation level using low-level toolkits such as
the ARToolkit [2]. Thus, reuse of more complex AR software

components is rare. Programming AR applications at a low level
of abstraction can become an error-prone and time-consuming
task, in particular if the applications become larger.

Some research projects such as the Designers Augmented
Reality Toolkit (DART) [3] provide high-level AR authoring tools
but concentrate on the support of non-programming experts.
However, more sophisticated applications (e.g. in task focused
domains such as medicine) can not be developed without deep
programming knowledge. Thus, it is necessary to facilitate AR
development also for programming experts. Concepts and tools
for an abstract design of AR applications above the
implementation level are still needed.

Unfortunately, there are only few approaches which address a
structured design of AR applications. For instance, ASUR [4] is a
notation for the specification of AR systems at an early stage of
the development process. However, ASUR does not specify how
to achieve a transition to the implementation level. The
Augmented Presentation and Interaction Language (APRIL) [5]
enables the definition of AR presentation flows via UML [6]
statecharts. Some design aspects, such as the structure of 3D
content, are not considered in APRIL.

In traditional software engineering, the de-facto standard for
software design is the Unified Modeling Language (UML).
However, without extensions the UML is not suitable for the
design of AR systems. For instance, the UML does not provide
elements which explicitly represent real physical objects (for
details please refer to [7]).

2 AN APPROACH FOR AN ABSTRACT DESIGN OF AR USER
INTERFACES AND APPLICATIONS

Our approach to address the problems mentioned above is a visual
language for the abstract pre-implementation design of AR
applications. This language is called SSIML/AR [7]. SSIML/AR
is based on the Scene Structure and Integration Modelling
Language (SSIML) [8]. This language is an extension of the
UML. SSIML models 3D content structures using a scene graph-
oriented notation. It provides model elements e.g. for modelling
virtual objects and groups in a virtual scene. In addition, it is
possible to specify relations between application classes and the
3D scene.

Primarily, SSIML/AR extends SSIML with model elements
which represent real (physical) objects. Therewith real and virtual
objects can be integrated in a scene. Furthermore, SSIML/AR
enables the specification of relations between scene elements (real
and virtual objects) and AR system components such as tracking
and rendering components. For a seamless transition to the
implementation level, code can be generated from the SSIML/AR
models.

In particular, SSIML/AR supports the development of AR
applications from task-focused domains such as maintenance and
repair. Therefore sequences of tasks the user has to perform to
solve a problem can be modelled. For each task, SSIML/AR
allows specifying the information which is presented to the user
(see section 2.4).

2.1 Example Scenario
In order to illustrate the basic concepts of SSIML/AR we have
chosen a scenario from the domain of maintenance. For
demonstration purposes the scenario was simplified as far as
possible. In the scenario the user is supported by an AR system in
exchanging the cartridge of an inkjet printer. To achieve her or his
goal the user has solve a sequence of tasks:

1. The user has to open the printer cover (task: open printer

cover).
2. The user has to localize and remove the empty ink cartridge

(task: remove old ink catridge).
3. The user has to install the new printer cartridge by attaching

it to the cartridge holder (task: install new ink catridge).
4. The user must close the printer cover again (task: close

printer cover).

2.2 Taskflow Model
In SSIML/AR the sequence of tasks is modelled with an UML
activity diagram (figure 1). Every task is represented by an action
in the activity diagram. Note that it is possible to decompose tasks
hierarchically or to model optional tasks. The hierarchical
decomposition is useful for more complex applications with a
large number of tasks.

2.3 Scene Model
The structure of the AR user interface is modelled in a SSIML/AR
scene graph (also called scene model). In contrast to
implementation-level scene graph architectures such as Java3D
[9], SSIML/AR allows specifying a scene at an abstract design
level. Implementation details such as specific transformation
values are not included into the scene model.

Figure 2 shows a screenshot of the UML tool NoMagic
MagicDraw [10] (see also section 2.6 about tool integration). The
scene model for the printer maintenance scenario is depicted in
the lower right window in figure 2. Different types of SSIML/AR

Figure 1: The sequence of user tasks in the printer cartridge
installation scenario

Figure 2: Screenshot of the UML tool MagicDraw [10] containing the SSIML/AR scene model for the printer cartridge installation scenario

nodes are visible. The scene node (S) is the root of the scene
graph. This node type is adopted from SSIML which is the basis
of SSIML/AR. The node with the name printerBody is a so-called
real object node (R). Real object nodes represent physical
(tangible) objects. A physical object can be manipulated by the
user in the real world. For instance, the user can move the printer
from one place to another. Position and orientation of a real object
can be tracked by a tracking device. In the virtual three-
dimensional space a real object can serve as container for other
objects (i.e. a group element), although it has no visual
representation (i.e. no 3D model or other virtual information is
associated directly with a real object). Tracking data is mapped to
the transformation values of the group element representing the
real object in the virtual space.

The nodes cover, oldCartridge, newCartridge and holder
represent hybrid objects (H). A hybrid object has a visual
equivalent in the real world as well as in the virtual world. The
coordinates of the real part of a hybrid object are mapped to the
coordinates of the corresponding equivalent in the virtual world.
For instance, the real empty ink cartridge is superimposed with a
virtual 3D cartridge model. This allows directing the user’s
attention to the empty cartridge in the second task. The type of the
3D model follows the node’s name (InkCartridge).

Note that there also exist node types for pure virtual objects
which can be integrated into a SSIML/AR scene graph, e.g. to
present textual information to the user. In addition, subgraphs of a
SSIML scene model can be encapsulated in special nodes. This
facilitates the management of more complex scene structures. For
a detailed description of the several different SSIML and
SSIML/AR node types please refer to [8] and [7].

2.4 Task-dependent Information Presentation
The information presented to the user by the AR system depends
on the user’s current task. For example, the information presented
to support the user in locating and opening the printer cover
should be different from the information which instructs the user
how to remove the empty ink cartridge. Thus, besides defining the
structure of the scene representing the AR user interface,
SSIML/AR allows specifying which information is rendered for a
special task. Therefore we provide the concept of task-constrained
edges. If a parent and a child node are connected via a task-
constrained edge, the child node will only be rendered if one of
the tasks specified in the task-constrained edge is the current task
of the user. For instance, in figure 2 a task-constrained edge
containing the tasks OpenPrinterCover and ClosePrinterCover is
modelled from the node printerBody to the node cover. This
means that the virtual information associated to the hybrid object
cover will only be rendered if the user works currently on the task
OpenPrinterCover or ClosePrinterCover (see taskflow diagram in
figure 1). Since a task-constrained edge may contain more than
one task, an object may be rendered for more than one specific
task.

2.5 Class-Node Interrelations
In SSIML/AR, two AR specific relation types between application
classes (represented by UML classes) and scene nodes can be
modelled: <<tracks>> and <<aligns>> relations.

A <<tracks>> relation between a tracker class and a real or
hybrid object node expresses that the tracker class can deliver data
containing position and orientation of the associated object. Such
transformation information can be transferred to other application
components, e.g. components which generate context data or
components which are responsible for the rendering of virtual
objects. In the model in figure 2, the class Customised-

VideoTracker calculates the positions and orientations of the
objects printerBody and newInkCartridge.

<<aligns>> relations may be specified between virtual objects
and classes which update the transformation values of these
objects according to the values calculated by a tracker class. An
example for an <<aligns>> relation is the relation between the
class PrinterSceneUpdater and the node newCartridge in figure 2.

2.6 Tool Integration
The realisation of SSIML/AR as UML profile (i.e. as an extension
of the UML) facilitates its integration into UML tools. For
instance, we have integrated SSIML/AR into the UML case tool
NoMagic MagicDraw [10]. Figure 2 represents a screenshot of
MagicDraw containing a SSIML/AR model. The tool integration
also allows exporting SSIML/AR models into the XML Metadata
Interchange (XMI) format [11]. The XMI format is supported by
many UML case tools. XMI-encoded models are a suitable basis
for translating the models to platform specific code using XSL
Transformations (XSLT) [12]. The generation of code skeletons
from SSIML/AR models eases the transition from the design to
the implementation level. An approach to map the models to code
is presented in [7].

3 CURRENT RESEARCH
Currently, it is not possible to specify the actions which trigger the
transitions between consecutive user tasks with SSIML/AR. A
simple method is to switch from one task to the next when the
user presses a key. However, it would be desirable that the AR
system recognizes the completion of a task automatically.

In an AR system, object relations can exist between real objects
or between real and virtual objects. Object-object relations are e.g.
collision or proximity. Object-object relations can trigger task
transition events. For example, if an AR system recognizes a
collision of two tracked physical objects it can generate a
corresponding collision event. In an AR application from the
domain of assembly and maintenance such an event could be used
to indicate that two objects have been joined together by the user
(such as the new printer cartridge and the cartridge holder in the
cartridge installation scenario – see section 2).

Also, camera-object relations could be analyzed by the system
to trigger transitions between tasks. This can be considered as a
special case of an object-object relation since a camera is also a
real object. For instance, when the user in the cartridge installation
scenario opens the printer cover and the empty cartridge inside the
printer is recognized by a video-based tracking system, an event
could be generated in order to switch to the
RemoveOldInkCartridge task.

Thus, a point of current interest is the specification of object-
object relations which describe the interaction between the user
and the AR system in the context of applications from task-
focused domains. A further question is how such relations can be
mapped to platform specific code.

4 SUMMARY
In this paper we underlined the potential of MR and especially AR
technologies for future applications. It can be noticed that there is
a lack of concepts and tools which support a pre-implementation
abstract specification of AR systems. We also presented three
main challenges when developing AR applications: The creation
of 3D content, the integration of 3D content into applications and
the integration of real physical objects into AR user interfaces.

Our approach to address the mentioned problems is a visual
modelling language for the semi-formal specification of AR-

Systems: SSIML/AR. We plan to extend the language in order to
allow specifying relations between real and virtual objects which
are part of the AR user interface.

REFERENCES
[1] Ronald T. Azuma. A Survey of Augmented Reality. Presence:

Teleoperators and Virtual Environments, Vol. 6, No. 4, pages 355-
385, August 1997.

[2] ARToolkit: http://www.hitl.washington.edu/artoolkit/
[3] Blair MacIntyre, Maribeth Gandy, Steven Dow, and Jay David

Bolter. DART: A Toolkit for Rapid Design Exploration of
Augmented Reality Experiences. Proc. UIST 2004, pages 197-206,
2004

[4] Emmanuel Dubois, Paulo Pinheiro da Silva, and Philip D. Gray.
Notational Support for the Design of Augmented Reality Systems.
Proc. DSV-IS 2002, pages 74-88, 2002

[5] Florian Ledermann. An Authoring Framework for Augmented
Reality Presentations. Diploma thesis, Vienna Technical University,
2004

[6] OMG. UML Superstructure Specification, Version 2.0, 2005
[7] Arnd Vitzthum. SSIML/AR: A Visual Language for the Abstract

Specification of AR User Interfaces. Proc. 3DUI 2006, pages 135-
142, 2006

[8] Arnd Vitzthum, and Andreas Pleuß. SSIML: Designing Structure
and Application Integration of 3D Scenes. Proc. Web3D 2005, pages
9-17, 2005

[9] Sun Microsystems. The Java 3D API Specification, Version 1.3,
June 2002

[10] NoMagic MagicDraw: http://www.magicdraw.com/
[11] OMG. XML Metadata Interchange (XMI) Specification. Version

2.0, 2003
[12] W3C. XSL Transformations (XSLT), Version 1.0, 1999

